# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py import math import torch import torch.nn as nn import torch.nn.functional as F import torch.fft as fft import pdb class AttnProcessor(nn.Module): r""" Default processor for performing attention-related computations. """ def __init__( self, hidden_size=None, cross_attention_dim=None, save_in_unet='down', atten_control=None, ): super().__init__() self.atten_control = atten_control self.save_in_unet = save_in_unet def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class IPAttnProcessor(nn.Module): r""" Attention processor for IP-Adapater. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. scale (`float`, defaults to 1.0): the weight scale of image prompt. num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): The context length of the image features. """ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False,save_in_unet='down', atten_control=None): super().__init__() self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.scale = scale self.num_tokens = num_tokens self.skip = skip self.atten_control = atten_control self.save_in_unet = save_in_unet self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states else: # get encoder_hidden_states, ip_hidden_states end_pos = encoder_hidden_states.shape[1] - self.num_tokens encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :], ) if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) if not self.skip: # for ip-adapter ip_key = self.to_k_ip(ip_hidden_states) ip_value = self.to_v_ip(ip_hidden_states) ip_key = attn.head_to_batch_dim(ip_key) ip_value = attn.head_to_batch_dim(ip_value) ip_attention_probs = attn.get_attention_scores(query, ip_key, None) self.attn_map = ip_attention_probs ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states) hidden_states = hidden_states + self.scale * ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class AttnProcessor2_0(torch.nn.Module): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__( self, hidden_size=None, cross_attention_dim=None, save_in_unet='down', atten_control=None, ): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.atten_control = atten_control self.save_in_unet = save_in_unet def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class IPAttnProcessor2_0(torch.nn.Module): r""" Attention processor for IP-Adapater for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. scale (`float`, defaults to 1.0): the weight scale of image prompt. num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): The context length of the image features. """ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False,save_in_unet='down', atten_control=None): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.scale = scale self.num_tokens = num_tokens self.skip = skip self.atten_control = atten_control self.save_in_unet = save_in_unet self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states else: # get encoder_hidden_states, ip_hidden_states end_pos = encoder_hidden_states.shape[1] - self.num_tokens encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :], ) if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if not self.skip: # for ip-adapter ip_key = self.to_k_ip(ip_hidden_states) ip_value = self.to_v_ip(ip_hidden_states) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) with torch.no_grad(): self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1) #print(self.attn_map.shape) ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ip_hidden_states = ip_hidden_states.to(query.dtype) hidden_states = hidden_states + self.scale * ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class IP_CS_AttnProcessor2_0(torch.nn.Module): r""" Attention processor for IP-Adapater for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. scale (`float`, defaults to 1.0): the weight scale of image prompt. num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): The context length of the image features. """ def __init__(self, hidden_size, cross_attention_dim=None, content_scale=1.0,style_scale=1.0, num_content_tokens=4,num_style_tokens=4, skip=False,content=False, style=False): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.content_scale = content_scale self.style_scale = style_scale self.num_content_tokens = num_content_tokens self.num_style_tokens = num_style_tokens self.skip = skip self.content = content self.style = style if self.content or self.style: self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_k_ip_content =None self.to_v_ip_content =None def set_content_ipa(self,content_scale=1.0): self.to_k_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False) self.to_v_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False) self.content_scale=content_scale self.content =True def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states else: # get encoder_hidden_states, ip_hidden_states end_pos = encoder_hidden_states.shape[1] - self.num_content_tokens-self.num_style_tokens encoder_hidden_states, ip_content_hidden_states,ip_style_hidden_states = ( encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:end_pos + self.num_content_tokens, :], encoder_hidden_states[:, end_pos + self.num_content_tokens:, :], ) if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if self.content is True: exit() if not self.skip and self.content is True: # print('content#####################################################') # for ip-content-adapter if self.to_k_ip_content is None: ip_content_key = self.to_k_ip(ip_content_hidden_states) ip_content_value = self.to_v_ip(ip_content_hidden_states) else: ip_content_key = self.to_k_ip_content(ip_content_hidden_states) ip_content_value = self.to_v_ip_content(ip_content_hidden_states) ip_content_key = ip_content_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_content_value = ip_content_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 ip_content_hidden_states = F.scaled_dot_product_attention( query, ip_content_key, ip_content_value, attn_mask=None, dropout_p=0.0, is_causal=False ) ip_content_hidden_states = ip_content_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ip_content_hidden_states = ip_content_hidden_states.to(query.dtype) hidden_states = hidden_states + self.content_scale * ip_content_hidden_states if not self.skip and self.style is True: # for ip-style-adapter ip_style_key = self.to_k_ip(ip_style_hidden_states) ip_style_value = self.to_v_ip(ip_style_hidden_states) ip_style_key = ip_style_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_style_value = ip_style_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 ip_style_hidden_states = F.scaled_dot_product_attention( query, ip_style_key, ip_style_value, attn_mask=None, dropout_p=0.0, is_causal=False ) ip_style_hidden_states = ip_style_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ip_style_hidden_states = ip_style_hidden_states.to(query.dtype) hidden_states = hidden_states + self.style_scale * ip_style_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states ## for controlnet class CNAttnProcessor: r""" Default processor for performing attention-related computations. """ def __init__(self, num_tokens=4,save_in_unet='down',atten_control=None): self.num_tokens = num_tokens self.atten_control = atten_control self.save_in_unet = save_in_unet def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states else: end_pos = encoder_hidden_states.shape[1] - self.num_tokens encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class CNAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self, num_tokens=4, save_in_unet='down', atten_control=None): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.num_tokens = num_tokens self.atten_control = atten_control self.save_in_unet = save_in_unet def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states else: end_pos = encoder_hidden_states.shape[1] - self.num_tokens encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class IP_FuAd_AttnProcessor2_0(torch.nn.Module): r""" Attention processor for IP-Adapater for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. scale (`float`, defaults to 1.0): the weight scale of image prompt. num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): The context length of the image features. """ def __init__(self, hidden_size, cross_attention_dim=None, content_scale=1.0,style_scale=1.0, num_content_tokens=4,num_style_tokens=4, skip=False,content=False, style=False, fuAttn=False, fuIPAttn=False, adainIP=False, fuScale=0, end_fusion=0, attn_name=None): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.content_scale = content_scale self.style_scale = style_scale self.num_style_tokens = num_style_tokens self.skip = skip self.content = content self.style = style self.fuAttn = fuAttn self.fuIPAttn = fuIPAttn self.adainIP = adainIP self.fuScale = fuScale self.denoise_step = 0 self.end_fusion = end_fusion self.name = attn_name if self.content or self.style: self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_k_ip_content =None self.to_v_ip_content =None # def set_content_ipa(self,content_scale=1.0): # self.to_k_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False) # self.to_v_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False) # self.content_scale=content_scale # self.content =True def reset_denoise_step(self): if self.denoise_step == 50: self.denoise_step = 0 # if "up_blocks.0.attentions.1.transformer_blocks.0.attn2" in self.name: # print("attn2 reset successful") def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ): self.denoise_step += 1 residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states else: # get encoder_hidden_states, ip_hidden_states end_pos = encoder_hidden_states.shape[1] -self.num_style_tokens encoder_hidden_states, ip_style_hidden_states = ( encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :], ) if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 # # modified the attnMap of the Stylization Image if self.fuAttn and self.denoise_step <= self.end_fusion: assert query.shape[0] == 4 scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) text_attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1) text_attn_probs[1] = self.fuScale*text_attn_probs[1] + (1-self.fuScale)*text_attn_probs[0] text_attn_probs[3] = self.fuScale*text_attn_probs[3] + (1-self.fuScale)*text_attn_probs[2] hidden_states = torch.matmul(text_attn_probs, value) else: hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) raw_hidden_states = hidden_states if not self.skip and self.style is True: # for ip-style-adapter ip_style_key = self.to_k_ip(ip_style_hidden_states) ip_style_value = self.to_v_ip(ip_style_hidden_states) ip_style_key = ip_style_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_style_value = ip_style_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 if self.fuIPAttn and self.denoise_step <= self.end_fusion: assert query.shape[0] == 4 if "down" in self.name: print("wrong! coding") exit() scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) ip_attn_probs = torch.matmul(query, ip_style_key.transpose(-2, -1)) * scale_factor ip_attn_probs = F.softmax(ip_attn_probs, dim=-1) ip_attn_probs[1] = self.fuScale*ip_attn_probs[1] + (1-self.fuScale)*ip_attn_probs[0] ip_attn_probs[3] = self.fuScale*ip_attn_probs[3] + (1-self.fuScale)*ip_attn_probs[2] ip_style_hidden_states = torch.matmul(ip_attn_probs, ip_style_value) else: ip_style_hidden_states = F.scaled_dot_product_attention( query, ip_style_key, ip_style_value, attn_mask=None, dropout_p=0.0, is_causal=False ) ip_style_hidden_states = ip_style_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ip_style_hidden_states = ip_style_hidden_states.to(query.dtype) if not self.adainIP: hidden_states = hidden_states + self.style_scale * ip_style_hidden_states else: # print("adain") def adain(content, style): content_mean = content.mean(dim=1, keepdim=True) content_std = content.std(dim=1, keepdim=True) style_mean = style.mean(dim=1, keepdim=True) style_std = style.std(dim=1, keepdim=True) normalized_content = (content - content_mean) / content_std stylized_content = normalized_content * style_std + style_mean return stylized_content hidden_states = adain(content=hidden_states, style=ip_style_hidden_states) if hidden_states.shape[0] == 4: hidden_states[0] = raw_hidden_states[0] hidden_states[2] = raw_hidden_states[2] # hidden_states = raw_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor self.reset_denoise_step() return hidden_states class IP_FuAd_AttnProcessor2_0_exp(torch.nn.Module): r""" Attention processor for IP-Adapater for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. scale (`float`, defaults to 1.0): the weight scale of image prompt. num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): The context length of the image features. """ def __init__(self, hidden_size, cross_attention_dim=None, content_scale=1.0,style_scale=1.0, num_content_tokens=4,num_style_tokens=4, skip=False,content=False, style=False, fuAttn=False, fuIPAttn=False, adainIP=False, fuScale=0, end_fusion=0, attn_name=None, save_attn_map=False): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.content_scale = content_scale self.style_scale = style_scale self.num_style_tokens = num_style_tokens self.skip = skip self.content = content self.style = style self.fuAttn = fuAttn self.fuIPAttn = fuIPAttn self.adainIP = adainIP self.fuScale = fuScale self.denoise_step = 0 self.end_fusion = end_fusion self.name = attn_name self.save_attn_map = save_attn_map if self.content or self.style: self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_k_ip_content =None self.to_v_ip_content =None # def set_content_ipa(self,content_scale=1.0): # self.to_k_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False) # self.to_v_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False) # self.content_scale=content_scale # self.content =True def reset_denoise_step(self): if self.denoise_step == 50: self.denoise_step = 0 # if "up_blocks.0.attentions.1.transformer_blocks.0.attn2" in self.name: # print("attn2 reset successful") def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ): self.denoise_step += 1 residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states else: # get encoder_hidden_states, ip_hidden_states end_pos = encoder_hidden_states.shape[1] - self.num_content_tokens-self.num_style_tokens encoder_hidden_states, ip_style_hidden_states = ( encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :], ) if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) ## attention map if self.save_attn_map: attention_probs = attn.get_attention_scores(attn.head_to_batch_dim(query), attn.head_to_batch_dim(value), attention_mask) if attention_probs is not None: if not hasattr(attn, "attn_map"): setattr(attn, "attn_map", {}) setattr(attn, "inference_step", 0) else: attn.inference_step += 1 # # maybe we need to save all the timestep # if attn.inference_step in self.attn_map_save_steps: attn.attn_map[attn.inference_step] = attention_probs.clone().cpu().detach() # attn.attn_map[attn.inference_step] = attention_probs.detach() ## end of attention map else: print(f"{attn} didn't get the attention probs") inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 # # modified the attnMap of the Stylization Image if self.fuAttn and self.denoise_step <= self.end_fusion: assert query.shape[0] == 4 scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) text_attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1) text_attn_probs[1] = self.fuScale*text_attn_probs[1] + (1-self.fuScale)*text_attn_probs[0] text_attn_probs[3] = self.fuScale*text_attn_probs[3] + (1-self.fuScale)*text_attn_probs[2] hidden_states = torch.matmul(text_attn_probs, value) else: hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) raw_hidden_states = hidden_states if not self.skip and self.style is True: # for ip-style-adapter ip_style_key = self.to_k_ip(ip_style_hidden_states) ip_style_value = self.to_v_ip(ip_style_hidden_states) ip_style_key = ip_style_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_style_value = ip_style_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 if self.fuIPAttn and self.denoise_step <= self.end_fusion: assert query.shape[0] == 4 if "down" in self.name: print("wrong! coding") exit() scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) ip_attn_probs = torch.matmul(query, ip_style_key.transpose(-2, -1)) * scale_factor ip_attn_probs = F.softmax(ip_attn_probs, dim=-1) ip_attn_probs[1] = self.fuScale*ip_attn_probs[1] + (1-self.fuScale)*ip_attn_probs[0] ip_attn_probs[3] = self.fuScale*ip_attn_probs[3] + (1-self.fuScale)*ip_attn_probs[2] ip_style_hidden_states = torch.matmul(ip_attn_probs, ip_style_value) else: ip_style_hidden_states = F.scaled_dot_product_attention( query, ip_style_key, ip_style_value, attn_mask=None, dropout_p=0.0, is_causal=False ) ip_style_hidden_states = ip_style_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ip_style_hidden_states = ip_style_hidden_states.to(query.dtype) # if self.adainIP and self.denoise_step >= self.start_adain: if self.adainIP: # print("adain") # if self.denoise_step == 1 and "up_blocks.1.attentions.2.transformer_blocks.1" in self.name: # print("adain") def adain(content, style): content_mean = content.mean(dim=1, keepdim=True) content_std = content.std(dim=1, keepdim=True) print("exp code") pdb.set_trace() style_mean = style.mean(dim=1, keepdim=True) style_std = style.std(dim=1, keepdim=True) normalized_content = (content - content_mean) / content_std stylized_content = normalized_content * style_std + style_mean return stylized_content pdb.set_trace() hidden_states = adain(content=hidden_states, style=ip_style_hidden_states) else: hidden_states = hidden_states + self.style_scale * ip_style_hidden_states if hidden_states.shape[0] == 4: hidden_states[0] = raw_hidden_states[0] hidden_states[2] = raw_hidden_states[2] # hidden_states = raw_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor self.reset_denoise_step() return hidden_states class AttnProcessor2_0_hijack(torch.nn.Module): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__( self, hidden_size=None, cross_attention_dim=None, save_in_unet='down', atten_control=None, fuSAttn=False, fuScale=0, end_fusion=0, attn_name=None, ): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.atten_control = atten_control self.save_in_unet = save_in_unet self.fuSAttn = fuSAttn self.fuScale = fuScale self.denoise_step = 0 self.end_fusion = end_fusion self.name = attn_name def reset_denoise_step(self): if self.denoise_step == 50: self.denoise_step = 0 # if "up_blocks.0.attentions.1.transformer_blocks.0.attn1" in self.name: # print("attn1 reset successful") def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ): self.denoise_step += 1 residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 if self.fuSAttn and self.denoise_step <= self.end_fusion: assert query.shape[0] == 4 if "up_blocks.1.attentions.2.transformer_blocks.1" in self.name and self.denoise_step == self.end_fusion: print("now: ", self.denoise_step, "end now:", self.end_fusion, "scale: ", self.fuScale) # pdb.set_trace() scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1) attn_probs[1] = self.fuScale*attn_probs[1] + (1-self.fuScale)*attn_probs[0] attn_probs[3] = self.fuScale*attn_probs[3] + (1-self.fuScale)*attn_probs[2] hidden_states = torch.matmul(attn_probs, value) else: hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor if self.denoise_step == 50: self.reset_denoise_step() return hidden_states class AttnProcessor2_0_exp(torch.nn.Module): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__( self, hidden_size=None, cross_attention_dim=None, save_in_unet='down', atten_control=None, fuSAttn=False, fuScale=0, end_fusion=0, attn_name=None, ): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.atten_control = atten_control self.save_in_unet = save_in_unet self.fuSAttn = fuSAttn self.fuScale = fuScale self.denoise_step = 0 self.end_fusion = end_fusion self.name = attn_name def reset_denoise_step(self): if self.denoise_step == 50: self.denoise_step = 0 # if "up_blocks.0.attentions.1.transformer_blocks.0.attn1" in self.name: # print("attn1 reset successful") def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ): self.denoise_step += 1 residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 if self.fuSAttn and self.denoise_step <= self.end_fusion: assert query.shape[0] == 4 if "up_blocks.1.attentions.2.transformer_blocks.1" in self.name and self.denoise_step == self.end_fusion: print("now: ", self.denoise_step, "end now:", self.end_fusion, "scale: ", self.fuScale) # pdb.set_trace() scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1) attn_probs[1] = self.fuScale*attn_probs[1] + (1-self.fuScale)*attn_probs[0] attn_probs[3] = self.fuScale*attn_probs[3] + (1-self.fuScale)*attn_probs[2] print("exp code") pdb.set_trace() def adain(content, style): content_mean = content.mean(dim=1, keepdim=True) content_std = content.std(dim=1, keepdim=True) style_mean = style.mean(dim=1, keepdim=True) style_std = style.std(dim=1, keepdim=True) normalized_content = (content - content_mean) / content_std stylized_content = normalized_content * style_std + style_mean return stylized_content value[1] = adain(content=value[0], style=value[1]) value[3] = adain(content=value[2], style=value[3]) hidden_states = torch.matmul(attn_probs, value) else: hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor self.reset_denoise_step() return hidden_states class IPAttnProcessor2_0_cross_modal(torch.nn.Module): r""" Attention processor for IP-Adapater for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. scale (`float`, defaults to 1.0): the weight scale of image prompt. num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): The context length of the image features. """ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False, fuAttn=False, fuIPAttn=False, adainIP=False, end_fusion=0, fuScale=0, attn_name=None): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.scale = scale self.num_tokens = num_tokens self.skip = skip self.fuAttn = fuAttn self.fuIPAttn = fuIPAttn self.adainIP = adainIP self.denoise_step = fuScale self.end_fusion = end_fusion self.fuScale = fuScale self.name = attn_name self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) def reset_denoise_step(self): if self.denoise_step == 50: self.denoise_step = 0 # if "up_blocks.0.attentions.1.transformer_blocks.0.attn2" in self.name: # print("attn2 reset successful") def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ): self.denoise_step += 1 residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states else: # get encoder_hidden_states, ip_hidden_states end_pos = encoder_hidden_states.shape[1] - self.num_tokens encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :], ) if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 if self.fuAttn and self.denoise_step <= self.end_fusion: assert query.shape[0] == 4 if "up_blocks.1.attentions.2.transformer_blocks.1" in self.name and self.denoise_step == self.end_fusion: print("fuAttn") print("now: ", self.denoise_step, "end now:", self.end_fusion, "scale: ", self.fuScale) scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) text_attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1) text_attn_probs[1] = self.fuScale*text_attn_probs[1] + (1-self.fuScale)*text_attn_probs[0] text_attn_probs[3] = self.fuScale*text_attn_probs[3] + (1-self.fuScale)*text_attn_probs[2] hidden_states = torch.matmul(text_attn_probs, value) else: hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) raw_hidden_states = hidden_states if not self.skip: # for ip-adapter ip_key = self.to_k_ip(ip_hidden_states) ip_value = self.to_v_ip(ip_hidden_states) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 if self.fuIPAttn and self.denoise_step <= self.end_fusion: assert query.shape[0] == 4 print("fuIPAttn") if "down" in self.name: print("wrong! coding") exit() scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) ip_attn_probs = torch.matmul(query, ip_key.transpose(-2, -1)) * scale_factor ip_attn_probs = F.softmax(ip_attn_probs, dim=-1) ip_attn_probs[1] = self.fuScale*ip_attn_probs[1] + (1-self.fuScale)*ip_attn_probs[0] ip_attn_probs[3] = self.fuScale*ip_attn_probs[3] + (1-self.fuScale)*ip_attn_probs[2] ip_hidden_states = torch.matmul(ip_attn_probs, ip_value) else: ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) with torch.no_grad(): self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1) #print(self.attn_map.shape) ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ip_hidden_states = ip_hidden_states.to(query.dtype) if self.adainIP: def adain(content, style): # 计算内容特征的均值和标准差 content_mean = content.mean(dim=1, keepdim=True) content_std = content.std(dim=1, keepdim=True) # 计算风格特征的均值和标准差 style_mean = style.mean(dim=1, keepdim=True) style_std = style.std(dim=1, keepdim=True) # 归一化内容特征并应用风格特征的均值和方差 normalized_content = (content - content_mean) / content_std stylized_content = normalized_content * style_std + style_mean return stylized_content hidden_states = adain(content=hidden_states, style=ip_hidden_states) else: hidden_states = hidden_states + self.scale * ip_hidden_states if hidden_states.shape[0] == 4: hidden_states[0] = raw_hidden_states[0] hidden_states[2] = raw_hidden_states[2] # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor if self.denoise_step == 50: self.reset_denoise_step() return hidden_states