File size: 25,560 Bytes
beff869 fd86c50 1c1de6b fb3b924 1c1de6b f954a72 fb3b924 5a667ef fb3b924 f232a9e ffba8f1 f232a9e 82f57d3 f232a9e ffba8f1 f232a9e f4abdd5 f232a9e fb3b924 1c1de6b fb3b924 1c1de6b fb3b924 1c1de6b fb3b924 a5b7670 fb3b924 ea78272 fb3b924 1c1de6b 5a667ef fb3b924 1c1de6b fb3b924 ea78272 1c1de6b ea78272 1c1de6b ea78272 1c1de6b ea78272 1c1de6b ea78272 1c1de6b fb3b924 0c42d93 1c1de6b fb3b924 fec983f fb3b924 1c1de6b fb3b924 0c42d93 1c1de6b fec983f fb3b924 1c1de6b d2fc390 1c1de6b fb3b924 0c42d93 1c1de6b 0c42d93 1c1de6b 0c42d93 1c1de6b 0c42d93 1c1de6b 0c42d93 1c1de6b 0c42d93 1c1de6b 0c42d93 5a667ef 1c1de6b 7207931 757f41e 364e449 7207931 ea78272 1c1de6b ea78272 1c1de6b ea78272 71fd248 ea78272 71fd248 5a667ef 1c1de6b 5a667ef 1c1de6b ea78272 fb3b924 1c1de6b ffba8f1 1c1de6b ffba8f1 1c1de6b ffba8f1 1c1de6b ffba8f1 1c1de6b ffba8f1 1c1de6b ffba8f1 1c1de6b ffba8f1 1c1de6b ffba8f1 1c1de6b ffba8f1 1c1de6b 43dc029 ec3e454 ab1a3ae 43dc029 9a47663 ec3e454 43dc029 fb3b924 1c1de6b 43dc029 1c1de6b 42aed68 1c1de6b ffba8f1 1c1de6b ffba8f1 1c1de6b ffba8f1 1c1de6b f232a9e ec3e454 1c1de6b fb3b924 ea78272 f232a9e 43dc029 1c1de6b 9df3444 1c1de6b fb3b924 1c1de6b fb3b924 1c1de6b fb3b924 1c1de6b fb3b924 1c1de6b fb3b924 ffba8f1 7e67a2b ffba8f1 fb3b924 ffba8f1 5a667ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
import os
os.system("wget https://raw.githubusercontent.com/Weyaxi/scrape-open-llm-leaderboard/main/openllm.py")
from openllm import *
import requests
import pandas as pd
from bs4 import BeautifulSoup
from tqdm import tqdm
from huggingface_hub import HfApi, CommitOperationAdd, create_commit
import gradio as gr
import datetime
api = HfApi()
HF_TOKEN = os.getenv('HF_TOKEN')
headers_models = ["🔢 Serial Number", "👤 Author Name", "📥 Total Downloads", "👍 Total Likes", "🤖 Number of Models",
"🏆 Best Model On Open LLM Leaderboard", "🥇 Best Rank On Open LLM Leaderboard",
"📊 Average Downloads per Model", "📈 Average Likes per Model", "🚀 Most Downloaded Model",
"📈 Most Download Count", "❤️ Most Liked Model", "👍 Most Like Count", "🔥 Trending Model",
"👑 Best Rank at Trending Models", "🏷️ Type"]
headers_datasets = ["🔢 Serial Number", "👤 Author Name", "📥 Total Downloads", "👍 Total Likes", "📊 Number of Datasets",
"📊 Average Downloads per Dataset", "📈 Average Likes per Dataset", "🚀 Most Downloaded Dataset",
"📈 Most Download Count", "❤️ Most Liked Dataset", "👍 Most Like Count", "🔥 Trending Dataset",
"👑 Best Rank at Trending Datasets", "🏷️ Type"]
headers_spaces = ["🔢 Serial Number", "👤 Author Name", "👍 Total Likes", "🚀 Number of Spaces", "📈 Average Likes per Space",
"❤️ Most Liked Space", "👍 Most Like Count", "🔥 Trending Space", "👑 Best Rank at Trending Spaces",
"🏷️ Type"]
def apply_headers(df, headers):
tmp = df.copy()
tmp.columns = headers
return tmp
def get_time():
return datetime.datetime.now().strftime("%d-%m-%Y %H-%M")
def upload_datasets(dfs):
time = get_time()
operations = [CommitOperationAdd(path_in_repo=f"{time}/models_df.csv", path_or_fileobj=(dfs[0].to_csv()).encode()),
CommitOperationAdd(path_in_repo=f"{time}/datasets_df.csv", path_or_fileobj=(dfs[1].to_csv()).encode()),
CommitOperationAdd(path_in_repo=f"{time}/spaces_df.csv", path_or_fileobj=(dfs[2].to_csv()).encode())]
return (create_commit(repo_id="Weyaxi/huggingface-leaderboard", operations=operations, commit_message=f"Uploading history of {time}", repo_type="dataset", token=HF_TOKEN))
def get_most(df_for_most_function):
download_sorted_df = df_for_most_function.sort_values(by=['downloads'], ascending=False)
most_downloaded = download_sorted_df.iloc[0]
like_sorted_df = df_for_most_function.sort_values(by=['likes'], ascending=False)
most_liked = like_sorted_df.iloc[0]
return {"Most Download": {"id": most_downloaded['id'], "downloads": most_downloaded['downloads'],
"likes": most_downloaded['likes']},
"Most Likes": {"id": most_liked['id'], "downloads": most_liked['downloads'], "likes": most_liked['likes']}}
def get_sum(df_for_sum_function):
sum_downloads = sum(df_for_sum_function['downloads'].tolist())
sum_likes = sum(df_for_sum_function['likes'].tolist())
return {"Downloads": sum_downloads, "Likes": sum_likes}
def get_openllm_leaderboard():
try:
data = get_json_format_data()
finished_models = get_datas(data)
df = pd.DataFrame(finished_models)
return df['Model'].tolist()
except Exception as e: # something is wrong about the leaderboard so return empty list
print(e)
return []
def get_ranking(model_list, target_org):
if not model_list:
return "Error on Leaderboard"
for index, model in enumerate(model_list):
if model.split("/")[0].lower() == target_org.lower():
return [index + 1, model]
return "Not Found"
def get_models(which_one):
if which_one == "models":
data = api.list_models()
elif which_one == "datasets":
data = api.list_datasets()
elif which_one == "spaces":
data = api.list_spaces()
all_list = []
for i in tqdm(data, desc=f"Scraping {which_one}", position=0, leave=True):
i = i.__dict__
id = i["id"].split("/")
if len(id) != 1:
json_format_data = {"author": id[0], "id": "/".join(id), "downloads": i['downloads'],
"likes": i['likes']} if which_one != "spaces" else {"author": id[0], "id": "/".join(id),
"downloads": 0, "likes": i['likes']}
all_list.append(json_format_data)
return all_list
def search(models_dict, author_name):
return pd.DataFrame(models_dict.get(author_name, []))
def group_models_by_author(all_things):
models_by_author = {}
for model in all_things:
author_name = model['author']
if author_name not in models_by_author:
models_by_author[author_name] = []
models_by_author[author_name].append(model)
return models_by_author
def make_leaderboard(orgs, users, which_one, data):
data_rows = []
open_llm_leaderboard = get_openllm_leaderboard() if which_one == "models" else None
trend = get_trending_list(1, which_one)
hepsi = [orgs, users]
for index, orgs in enumerate(hepsi):
org_or_user = "Organization" if index == 0 else "User"
for org in tqdm(orgs, desc=f"Proccesing: ({which_one}) ({org_or_user})", position=0, leave=True):
rank = get_ranking_trend(trend, org)
df = search(data, org)
if len(df) == 0:
continue
num_things = len(df)
sum_info = get_sum(df)
most_info = get_most(df)
if which_one == "models":
open_llm_leaderboard_get_org = get_ranking(open_llm_leaderboard, org)
data_rows.append({
"Author Name": org,
"Total Downloads": sum_info["Downloads"],
"Total Likes": sum_info["Likes"],
"Number of Models": num_things,
"Best Model On Open LLM Leaderboard": open_llm_leaderboard_get_org[1] if open_llm_leaderboard_get_org != "Not Found" else open_llm_leaderboard_get_org,
"Best Rank On Open LLM Leaderboard": open_llm_leaderboard_get_org[0] if open_llm_leaderboard_get_org != "Not Found" else open_llm_leaderboard_get_org,
"Average Downloads per Model": int(sum_info["Downloads"] / num_things) if num_things != 0 else 0,
"Average Likes per Model": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
"Most Downloaded Model": most_info["Most Download"]["id"],
"Most Download Count": most_info["Most Download"]["downloads"],
"Most Liked Model": most_info["Most Likes"]["id"],
"Most Like Count": most_info["Most Likes"]["likes"],
"Trending Model": rank['id'],
"Best Rank at Trending Models": rank['rank'],
"Type": org_or_user
})
elif which_one == "datasets":
data_rows.append({
"Author Name": org,
"Total Downloads": sum_info["Downloads"],
"Total Likes": sum_info["Likes"],
"Number of Datasets": num_things,
"Average Downloads per Dataset": int(sum_info["Downloads"] / num_things) if num_things != 0 else 0,
"Average Likes per Dataset": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
"Most Downloaded Dataset": most_info["Most Download"]["id"],
"Most Download Count": most_info["Most Download"]["downloads"],
"Most Liked Dataset": most_info["Most Likes"]["id"],
"Most Like Count": most_info["Most Likes"]["likes"],
"Trending Dataset": rank['id'],
"Best Rank at Trending Datasets": rank['rank'],
"Type": org_or_user
})
elif which_one == "spaces":
data_rows.append({
"Author Name": org,
"Total Likes": sum_info["Likes"],
"Number of Spaces": num_things,
"Average Likes per Space": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
"Most Liked Space": most_info["Most Likes"]["id"],
"Most Like Count": most_info["Most Likes"]["likes"],
"Trending Space": rank['id'],
"Best Rank at Trending Spaces": rank['rank'],
"Type": org_or_user
})
leaderboard = pd.DataFrame(data_rows)
temp = ["Total Downloads"] if which_one != "spaces" else ["Total Likes"]
leaderboard = leaderboard.sort_values(by=temp, ascending=False)
leaderboard.insert(0, "Serial Number", range(1, len(leaderboard) + 1))
return leaderboard
def clickable(x, which_one):
if which_one == "models":
if x != "Not Found":
return f'<a target="_blank" href="https://huggingface.co/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
else:
return "Not Found"
else:
if x != "Not Found":
return f'<a target="_blank" href="https://huggingface.co/{which_one}/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
return "Not Found"
def models_df_to_clickable(df, columns, which_one):
for column in columns:
if column == "Author Name":
df[column] = df[column].apply(lambda x: clickable(x, "models"))
else:
df[column] = df[column].apply(lambda x: clickable(x, which_one))
return df
def get_trending_list(pages, which_one):
trending_list = []
for i in range(pages):
json_data = requests.get(f"https://huggingface.co/{which_one}-json?p={i}").json()
for thing in json_data[which_one]:
id = thing["id"]
likes = thing["likes"]
if which_one != "spaces":
downloads = thing["downloads"]
trending_list.append({"id": id, "downloads": downloads, "likes": likes})
else:
trending_list.append({"id": id, "likes": likes})
return trending_list
def get_ranking_trend(json_data, org_name):
names = [item['id'].split("/")[0] for item in json_data]
models = [item['id'] for item in json_data]
if org_name in names:
temp = names.index(org_name)
return {"id": models[temp], "rank": temp + 1}
else:
return {"id": "Not Found", "rank": "Not Found"}
def fetch_data_from_url(url):
response = requests.get(url)
if response.status_code == 200:
data = response.text.splitlines()
return [line.rstrip("\n") for line in data]
else:
print(f"Failed to fetch data from URL: {url}")
return []
user_names_url = "https://huggingface.co/datasets/Weyaxi/users-and-organizations/raw/main/user_names.txt"
org_names_url = "https://huggingface.co/datasets/Weyaxi/users-and-organizations/raw/main/org_names.txt"
user_names_in_list = fetch_data_from_url(user_names_url)
org_names_in_list = fetch_data_from_url(org_names_url)
datetime_now = str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"))
INTRODUCTION_TEXT = f"""
🎯 The Leaderboard aims to track users and organizations rankings and stats. This space is inspired by the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
## Available Dataframes:
- 🏛️ Models
- 📊 Datasets
- 🚀 Spaces
## Backend
🛠️ The leaderboard's backend mainly runs on the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api).
📒 **Note:** In the model's dataframe, there are some columns related to the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). This data is also retrieved through web scraping.
📒 **Note:** In trending models/datasets/spaces, first 300 models/datasets/spaces is being retrieved from huggingface.
## 🔍 Searching Organizations and Users
You can search for organizations and users in the Search tab. In this tab, you can view an author's stats even if they are not at the top of the leaderboard.
## Filtering Organizations and Users
🧮 You can filter the dataset to show only Organizations or Users!
✅ Use checkboxs for this!
## Last Update
⌛ This space is last updated in **{datetime_now}**.
"""
def get_avatar(user_name, user):
try:
url = f"https://huggingface.co/{user_name}"
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
if user:
avatar = soup.find("img", {"class": "h-32 w-32 overflow-hidden rounded-full shadow-inner lg:h-48 lg:w-48"})['src']
full = soup.find("span", {"class": "mr-3 leading-6"}).text
return [avatar, full]
else:
avatar = soup.find("img", {"class": "mb-2 mr-4 h-12 w-12 flex-none overflow-hidden rounded-lg sm:mb-0 sm:h-20 sm:w-20"})['src']
full = soup.find("h1", {"class": "mb-2 mr-3 text-2xl font-bold md:mb-0"}).text
return [avatar, full]
except Exception as e:
print(e)
return "Error"
def update_table(orgs, users, how_much=400, return_all=False):
dataFrame = models_df
if not orgs and users:
filtered_df = dataFrame[(dataFrame['Type'] != 'Organization') | (dataFrame['Type'] == 'User')]
elif orgs and not users:
filtered_df = dataFrame[(dataFrame['Type'] == 'Organization') | (dataFrame['Type'] != 'User')]
elif orgs and users:
filtered_df = dataFrame[(dataFrame['Type'] == 'Organization') | (dataFrame['Type'] == 'User')]
else:
return apply_headers(dataFrame.head(0), headers_models)
if return_all:
return apply_headers(filtered_df, headers_models)
else:
return apply_headers(filtered_df, headers_models).head(how_much)
def update_table_datasets(orgs, users, how_much=250, return_all=False):
dataFrame = dataset_df
if not orgs and users:
filtered_df = dataFrame[(dataFrame['Type'] != 'Organization') | (dataFrame['Type'] == 'User')]
elif orgs and not users:
filtered_df = dataFrame[(dataFrame['Type'] == 'Organization') | (dataFrame['Type'] != 'User')]
elif orgs and users:
filtered_df = dataFrame[(dataFrame['Type'] == 'Organization') | (dataFrame['Type'] == 'User')]
else:
return apply_headers(dataFrame, headers_datasets).head(0)
if return_all:
return apply_headers(filtered_df, headers_datasets)
else:
return apply_headers(filtered_df, headers_datasets).head(how_much)
def update_table_spaces(orgs, users, how_much=200, return_all=False):
dataFrame = spaces_df
if not orgs and users:
filtered_df = dataFrame[(dataFrame['Type'] != 'Organization') | (dataFrame['Type'] == 'User')]
elif orgs and not users:
filtered_df = dataFrame[(dataFrame['Type'] == 'Organization') | (dataFrame['Type'] != 'User')]
elif orgs and users:
filtered_df = dataFrame[(dataFrame['Type'] == 'Organization') | (dataFrame['Type'] == 'User')]
else:
return apply_headers(dataFrame, headers_spaces).head(0)
if return_all:
return apply_headers(filtered_df, headers_spaces)
else:
return apply_headers(filtered_df, headers_spaces).head(how_much)
def search_df(author):
sonuc_models, sonuc_datasets, sonuc_spaces =[], [], []
org_or_user = "User" if author in user_names_in_list else "Org"
a = get_avatar(author, True if org_or_user=="User" else False)
if a == "Error":
return "Error happened, maybe author name is not valid."
# Search in models_df
df = models_df
for index, item in enumerate(df['Author Name'].tolist()):
if f'"https://huggingface.co/{author}"' in item:
sonuc_models = df.iloc[index]
break # Break out of the loop once a match is found
# Search in dataset_df
df = dataset_df
for index, item in enumerate(df['Author Name'].tolist()):
if f'"https://huggingface.co/{author}"' in item:
sonuc_datasets = df.iloc[index]
break # Break out of the loop once a match is found
# Search in spaces_df
df = spaces_df
for index, item in enumerate(df['Author Name'].tolist()):
if f'"https://huggingface.co/{author}"' in item:
sonuc_spaces = df.iloc[index]
break # Break out of the loop once a match is found
author_name = sonuc_models['Author Name'] if len(sonuc_models) > 0 else "Not Found"
global_rank = sonuc_models['Serial Number'] if len(sonuc_models) > 0 else "Not Found"
if len(sonuc_models) > 0:
if org_or_user == "User":
user_rank = filtered_model_users.index(f'<a target="_blank" href="https://huggingface.co/{author}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{author}</a>')
else:
user_rank = filtered_model_orgs.index(f'<a target="_blank" href="https://huggingface.co/{author}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{author}</a>')
else:
user_rank = "Not Found"
global_datasets = sonuc_datasets['Serial Number'] if len(sonuc_datasets) > 0 else "Not Found"
if len(sonuc_datasets) > 0:
if org_or_user == "User":
user_datasets = filtered_datasets_users.index(f'<a target="_blank" href="https://huggingface.co/{author}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{author}</a>')
else:
user_datasets = filtered_datasets_orgs.index(f'<a target="_blank" href="https://huggingface.co/{author}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{author}</a>')
else:
user_datasets = "Not Found"
global_spaces = sonuc_spaces['Serial Number'] if len(sonuc_spaces) > 0 else "Not Found"
if len(sonuc_spaces) > 0:
if org_or_user == "User":
user_spaces = filtered_spaces_users.index(f'<a target="_blank" href="https://huggingface.co/{author}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{author}</a>')
else:
user_spaces = filtered_spaces_orgs.index(f'<a target="_blank" href="https://huggingface.co/{author}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{author}</a>')
else:
user_spaces = "Not Found"
total_model_downloads = sonuc_models['Total Downloads'] if len(sonuc_models) > 0 else "Not Found"
total_model_likes = sonuc_models['Total Likes'] if len(sonuc_models) > 0 else "Not Found"
model_count = sonuc_models['Number of Models'] if len(sonuc_models) > 0 else "Not Found"
total_dataset_downloads = sonuc_datasets['Total Downloads'] if len(sonuc_datasets) > 0 else "Not Found"
total_dataset_likes = sonuc_datasets['Total Likes'] if len(sonuc_datasets) > 0 else "Not Found"
dataset_count = sonuc_datasets['Number of Datasets'] if len(sonuc_datasets) > 0 else "Not Found"
total_space_likes = sonuc_spaces['Total Likes'] if len(sonuc_spaces) > 0 else "Not Found"
space_count = sonuc_spaces['Number of Spaces'] if len(sonuc_spaces) > 0 else "Not Found"
markdown_text = f'''
<img style="float: right;" src="{a[0]}">
<h1>{author_name} ({a[1]})<h1>
## 🏆 Ranks
- Global: {global_rank}
- Models in authors category: {user_rank}
- Datasets (global): {global_datasets}
- Datasets in authors category: {user_datasets}
- Spaces (global): {global_spaces}
- Spaces in authors category: {user_spaces}
## 🤖 Models
- Total downloads: {total_model_downloads}
- Total Likes: {total_model_likes}
- Model count: {model_count}
## 📊 Datasets
- Total downloads: {total_dataset_downloads}
- Total Likes: {total_dataset_likes}
- Dataset count: {dataset_count}
## 🚀 Spaces
- Total Likes: {total_space_likes}
- Spaces count: {space_count}
'''
return markdown_text
def search_bar_in_df_fn(search_text):
dfs = [models_df, dataset_df, spaces_df]
headers = [headers_models, headers_datasets, headers_spaces]
how_much_list = [400, 250, 200]
lists_to_return = []
for df in dfs:
lists_to_return.append(df[df['Author Name'].str.contains(f'https://huggingface.co/{search_text}', case=False, na=False)])
for index in range(len(lists_to_return)):
lists_to_return[index] = apply_headers(lists_to_return[index], headers[index]).head(how_much_list[index])
return lists_to_return
with gr.Blocks() as demo:
gr.Markdown("""<h1 align="center" id="space-title">🤗 Huggingface Leaderboard</h1>""")
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
all_models = get_models("models")
all_datasets = get_models("datasets")
all_spaces = get_models("spaces")
with gr.Column(min_width=320):
with gr.Box():
orgs = gr.Checkbox(value=True, label="Show Organizations", interactive=True)
users = gr.Checkbox(value=True, label="Show users", interactive=True)
with gr.Column(min_width=320):
search_bar_in_df = gr.Textbox(placeholder="🔍 Search for a author", show_label=False)
with gr.TabItem("🏛️ Models", id=1):
columns_to_convert = ["Author Name", "Best Model On Open LLM Leaderboard", "Most Downloaded Model",
"Most Liked Model", "Trending Model"]
models_df = make_leaderboard(org_names_in_list, user_names_in_list, "models", group_models_by_author(all_models))
models_df = models_df_to_clickable(models_df, columns_to_convert, "models")
gr_models = gr.Dataframe(apply_headers(models_df, headers_models).head(400), headers=headers_models, interactive=True,
datatype=["str", "markdown", "str", "str", "str", "markdown", "str", "str", "str",
"markdown", "str", "markdown", "str", "markdown", "str", "str"])
with gr.TabItem("📊 Datasets", id=2):
columns_to_convert = ["Author Name", "Most Downloaded Dataset", "Most Liked Dataset", "Trending Dataset"]
dataset_df = make_leaderboard(org_names_in_list, user_names_in_list, "datasets", group_models_by_author(all_datasets))
dataset_df = models_df_to_clickable(dataset_df, columns_to_convert, "datasets")
gr_datasets = gr.Dataframe(apply_headers(dataset_df, headers_datasets).head(250), headers=headers_datasets, interactive=False,
datatype=["str", "markdown", "str", "str", "str", "str", "str", "markdown", "str",
"markdown", "str", "markdown", "str", "str"])
with gr.TabItem("🚀 Spaces", id=3):
columns_to_convert = ["Author Name", "Most Liked Space", "Trending Space"]
spaces_df = make_leaderboard(org_names_in_list, user_names_in_list, "spaces", group_models_by_author(all_spaces))
spaces_df = models_df_to_clickable(spaces_df, columns_to_convert, "spaces")
gr_spaces = gr.Dataframe(apply_headers(spaces_df, headers_spaces).head(200), headers=headers_spaces, interactive=False,
datatype=["str", "markdown", "str", "str", "str", "markdown", "str", "markdown", "str",
"str"])
with gr.TabItem("🔍 Search report", id=4):
with gr.Column(min_width=320):
search_bar = gr.Textbox(
placeholder=" 🔍 Search for your author and press ENTER",
show_label=False)
run_btn = gr.Button("Show stats for author")
yazi = gr.Markdown()
run_btn.click(fn=search_df, inputs=search_bar, outputs=yazi)
search_bar.submit(fn=search_df, inputs=search_bar, outputs=yazi)
commit = upload_datasets([models_df, dataset_df, spaces_df])
print(commit)
search_bar_in_df.submit(fn=search_bar_in_df_fn, inputs=search_bar_in_df, outputs=[gr_models, gr_datasets, gr_spaces])
orgs.change(fn=update_table, inputs=[orgs, users], outputs=gr_models)
orgs.change(fn=update_table_datasets, inputs=[orgs, users], outputs=gr_datasets)
orgs.change(fn=update_table_spaces, inputs=[orgs, users], outputs=gr_spaces)
users.change(fn=update_table, inputs=[orgs, users], outputs=gr_models)
users.change(fn=update_table_datasets, inputs=[orgs, users], outputs=gr_datasets)
users.change(fn=update_table_spaces, inputs=[orgs, users], outputs=gr_spaces)
filtered_model_users = update_table(orgs=False, users=True, return_all=True)['👤 Author Name'].tolist()
filtered_model_orgs = update_table(orgs=True, users=False, return_all=True)['👤 Author Name'].tolist()
filtered_datasets_users = update_table_datasets(orgs=False, users=True, return_all=True)['👤 Author Name'].tolist()
filtered_datasets_orgs = update_table_datasets(orgs=True, users=False, return_all=True)['👤 Author Name'].tolist()
filtered_spaces_users = update_table_spaces(orgs=False, users=True, return_all=True)['👤 Author Name'].tolist()
filtered_spaces_orgs = update_table_spaces(orgs=True, users=False, return_all=True)['👤 Author Name'].tolist()
demo.launch(debug=True)
|