Weyaxi's picture
Auto restart and errror handling when fetching open llm leaderboard
5a667ef
raw
history blame
12.9 kB
import re
import json
import requests
import pandas as pd
from tqdm import tqdm
from bs4 import BeautifulSoup
from huggingface_hub import HfApi, list_models, list_datasets, list_spaces
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
import datetime
api = HfApi()
def get_most(df_for_most_function):
download_sorted_df = df_for_most_function.sort_values(by=['downloads'], ascending=False)
most_downloaded = download_sorted_df.iloc[0]
like_sorted_df = df_for_most_function.sort_values(by=['likes'], ascending=False)
most_liked = like_sorted_df.iloc[0]
return {"Most Download": {"id": most_downloaded['id'], "downloads": most_downloaded['downloads'], "likes": most_downloaded['likes']}, "Most Likes": {"id": most_liked['id'], "downloads": most_liked['downloads'], "likes": most_liked['likes']}}
def get_sum(df_for_sum_function):
sum_downloads = sum(df_for_sum_function['downloads'].tolist())
sum_likes = sum(df_for_sum_function['likes'].tolist())
return {"Downloads": sum_downloads, "Likes": sum_likes}
def get_openllm_leaderboard():
try:
url = 'https://huggingfaceh4-open-llm-leaderboard.hf.space/'
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
script_elements = soup.find_all('script')
data = json.loads(str(script_elements[1])[31:-10])
component_index = 19
result_list = []
i = 0
while True:
try:
normal_name = data['components'][component_index]['props']['value']['data'][i][-1]
result_list.append(normal_name)
i += 1
except (IndexError, AttributeError):
return result_list
except Exception as e:
print("Error on open llm leaderboard: ", e)
return []
def get_ranking(model_list, target_org):
if model_list == []:
return "Error on Leaderboard"
for index, model in enumerate(model_list):
if model.split("/")[0].lower() == target_org.lower():
return [index+1, model]
return "Not Found"
def get_models(which_one):
if which_one == "models":
data = api.list_models()
elif which_one == "datasets":
data = api.list_datasets()
elif which_one == "spaces":
data = api.list_spaces()
all_list = []
for i in tqdm(data, desc=f"Scraping {which_one}", position=0, leave=True):
i = i.__dict__
id = i["id"].split("/")
if len(id) != 1:
json_format_data = {"author": id[0] ,"id": "/".join(id), "downloads": i['downloads'], "likes": i['likes']} if which_one != "spaces" else {"author": id[0] ,"id": "/".join(id), "downloads": 0, "likes": i['likes']}
all_list.append(json_format_data)
return all_list
def search(models_dict, author_name):
return pd.DataFrame(models_dict.get(author_name, []))
def group_models_by_author(all_things):
models_by_author = {}
for model in all_things:
author_name = model['author']
if author_name not in models_by_author:
models_by_author[author_name] = []
models_by_author[author_name].append(model)
return models_by_author
def make_leaderboard(orgs, which_one, data):
data_rows = []
open_llm_leaderboard = get_openllm_leaderboard() if which_one == "models" else None
trend = get_trending_list(1, which_one)
for org in tqdm(orgs, desc=f"Proccesing Organizations ({which_one})", position=0, leave=True):
rank = get_ranking_trend(trend, org)
df = search(data, org)
if len(df) == 0:
continue
num_things = len(df)
sum_info = get_sum(df)
most_info = get_most(df)
if which_one == "models":
open_llm_leaderboard_get_org = get_ranking(open_llm_leaderboard, org)
data_rows.append({
"Organization Name": org,
"Total Downloads": sum_info["Downloads"],
"Total Likes": sum_info["Likes"],
"Number of Models": num_things,
"Best Model On Open LLM Leaderboard": open_llm_leaderboard_get_org[1] if open_llm_leaderboard_get_org != "Not Found" else open_llm_leaderboard_get_org,
"Best Rank On Open LLM Leaderboard": open_llm_leaderboard_get_org[0] if open_llm_leaderboard_get_org != "Not Found" else open_llm_leaderboard_get_org,
"Average Downloads per Model": int(sum_info["Downloads"] / num_things) if num_things != 0 else 0,
"Average Likes per Model": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
"Most Downloaded Model": most_info["Most Download"]["id"],
"Most Download Count": most_info["Most Download"]["downloads"],
"Most Liked Model": most_info["Most Likes"]["id"],
"Most Like Count": most_info["Most Likes"]["likes"],
"Trending Model": rank['id'],
"Best Rank at Trending Models": rank['rank']
})
elif which_one == "datasets":
data_rows.append({
"Organization Name": org,
"Total Downloads": sum_info["Downloads"],
"Total Likes": sum_info["Likes"],
"Number of Datasets": num_things,
"Average Downloads per Dataset": int(sum_info["Downloads"] / num_things) if num_things != 0 else 0,
"Average Likes per Dataset": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
"Most Downloaded Dataset": most_info["Most Download"]["id"],
"Most Download Count": most_info["Most Download"]["downloads"],
"Most Liked Dataset": most_info["Most Likes"]["id"],
"Most Like Count": most_info["Most Likes"]["likes"],
"Trending Dataset": rank['id'],
"Best Rank at Trending Datasets": rank['rank']
})
elif which_one == "spaces":
data_rows.append({
"Organization Name": org,
"Total Likes": sum_info["Likes"],
"Number of Spaces": num_things,
"Average Likes per Space": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
"Most Liked Space": most_info["Most Likes"]["id"],
"Most Like Count": most_info["Most Likes"]["likes"],
"Trending Space": rank['id'],
"Best Rank at Trending Spaces": rank['rank']
})
leaderboard = pd.DataFrame(data_rows)
temp = ["Total Downloads"] if which_one != "spaces" else ["Total Likes"]
leaderboard = leaderboard.sort_values(by=temp, ascending=False)
leaderboard.insert(0, "Serial Number", range(1, len(leaderboard) + 1))
return leaderboard
def clickable(x, which_one):
if which_one == "models":
if x != "Not Found":
return f'<a target="_blank" href="https://huggingface.co/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
else:
return "Not Found"
else:
if x != "Not Found":
return f'<a target="_blank" href="https://huggingface.co/{which_one}/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
return "Not Found"
def models_df_to_clickable(df, columns, which_one):
for column in columns:
if column == "Organization Name":
df[column] = df[column].apply(lambda x: clickable(x, "models"))
else:
df[column] = df[column].apply(lambda x: clickable(x, which_one))
return df
def get_trending_list(pages, which_one):
trending_list = []
for i in range(pages):
json_data = requests.get(f"https://huggingface.co/{which_one}-json?p={i}").json()
for thing in json_data[which_one]:
id = thing["id"]
likes = thing["likes"]
if which_one != "spaces":
downloads = thing["downloads"]
trending_list.append({"id": id, "downloads": downloads, "likes": likes})
else:
trending_list.append({"id": id, "likes": likes})
return trending_list
def get_ranking_trend(json_data, org_name):
names = [item['id'].split("/")[0] for item in json_data]
models = [item['id'] for item in json_data]
if org_name in names:
temp = names.index(org_name)
return {"id": models[temp], "rank": temp+1}
else:
return {"id": "Not Found", "rank": "Not Found"}
def restart_space():
api.restart_space(repo_id="TFLai/organization-leaderboard", token=HF_TOKEN)
with open("org_names.txt", "r") as f:
org_names_in_list = [i.rstrip("\n") for i in f.readlines()]
datetime = str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"))
INTRODUCTION_TEXT = f"""
🎯 The Organization Leaderboard aims to track organization rankings. This space is inspired by the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
## Available Dataframes:
- 🏛️ Models
- 📊 Datasets
- 🚀 Spaces
## Backend
🛠️ The leaderboard's backend mainly runs on the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api).
🛠️ Organization names are retrieved using web scraping from [Huggingface Organizations](https://huggingface.co/organizations).
**🌐 Note:** In the model's dataframe, there are some columns related to the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). This data is also retrieved through web scraping.
**🌐 Note:** In trending models, first 300 models/datasets/spaces is being retrieved from huggingface.
## Last Update
⌛ This space is last updated in **{datetime}**.
"""
with gr.Blocks() as demo:
gr.Markdown("""<h1 align="center" id="space-title">🤗 Organization Leaderboard</h1>""")
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
all_models = get_models("models")
all_datasets = get_models("datasets")
all_spaces = get_models("spaces")
with gr.TabItem("🏛️ Models", id=1):
columns_to_convert = ["Organization Name", "Best Model On Open LLM Leaderboard", "Most Downloaded Model", "Most Liked Model", "Trending Model"]
models_df = make_leaderboard(org_names_in_list, "models", group_models_by_author(all_models))
models_df = models_df_to_clickable(models_df, columns_to_convert, "models")
headers = ["🔢 Serial Number", "🏢 Organization Name", "📥 Total Downloads", "👍 Total Likes", "🤖 Number of Models", "🏆 Best Model On Open LLM Leaderboard", "🥇 Best Rank On Open LLM Leaderboard", "📊 Average Downloads per Model", "📈 Average Likes per Model", "🚀 Most Downloaded Model", "📈 Most Download Count", "❤️ Most Liked Model", "👍 Most Like Count", "🔥 Trending Model", "👑 Best Rank at Trending Models"]
gr.Dataframe(models_df.head(400), headers=headers, interactive=True, datatype=["str", "markdown", "str", "str", "str", "markdown", "str", "str", "str", "markdown", "str", "markdown", "str", "markdown", "str"])
with gr.TabItem("📊 Datasets", id=2):
columns_to_convert = ["Organization Name", "Most Downloaded Dataset", "Most Liked Dataset", "Trending Dataset"]
dataset_df = make_leaderboard(org_names_in_list, "datasets", group_models_by_author(all_datasets))
dataset_df = models_df_to_clickable(dataset_df, columns_to_convert, "datasets")
headers = ["🔢 Serial Number", "🏢 Organization Name", "📥 Total Downloads", "👍 Total Likes", "📊 Number of Datasets", "📊 Average Downloads per Dataset", "📈 Average Likes per Dataset", "🚀 Most Downloaded Dataset", "📈 Most Download Count", "❤️ Most Liked Dataset", "👍 Most Like Count", "🔥 Trending Dataset", "👑 Best Rank at Trending Datasets"]
gr.Dataframe(dataset_df.head(250), headers=headers, interactive=False, datatype=["str", "markdown", "str", "str", "str", "str", "str", "markdown", "str", "markdown", "str", "markdown", "str"])
with gr.TabItem("🚀 Spaces", id=3):
columns_to_convert = ["Organization Name", "Most Liked Space", "Trending Space"]
spaces_df = make_leaderboard(org_names_in_list, "spaces", group_models_by_author(all_spaces))
spaces_df = models_df_to_clickable(spaces_df, columns_to_convert, "spaces")
headers = ["🔢 Serial Number", "🏢 Organization Name", "👍 Total Likes", "🚀 Number of Spaces", "📈 Average Likes per Space", "❤️ Most Liked Space", "👍 Most Like Count", "🔥 Trending Space", "👑 Best Rank at Trending Spaces"]
gr.Dataframe(spaces_df.head(200), headers=headers, interactive=False, datatype=["str", "markdown", "str", "str", "str", "markdown", "str", "markdown", "str"])
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
demo.launch()