import os os.sysytem("wget https://raw.githubusercontent.com/Weyaxi/scrape-open-llm-leaderboard/main/openllm.py") from openllm import * import requests import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm from huggingface_hub import HfApi, CommitOperationAdd, create_commit import gradio as gr import datetime api = HfApi() HF_TOKEN = os.getenv('HF_TOKEN') headers_models = ["🔢 Serial Number", "👤 Author Name", "📥 Total Downloads", "👍 Total Likes", "🤖 Number of Models", "🏆 Best Model On Open LLM Leaderboard", "🥇 Best Rank On Open LLM Leaderboard", "📊 Average Downloads per Model", "📈 Average Likes per Model", "🚀 Most Downloaded Model", "📈 Most Download Count", "❤️ Most Liked Model", "👍 Most Like Count", "🔥 Trending Model", "👑 Best Rank at Trending Models", "🏷️ Type"] headers_datasets = ["🔢 Serial Number", "👤 Author Name", "📥 Total Downloads", "👍 Total Likes", "📊 Number of Datasets", "📊 Average Downloads per Dataset", "📈 Average Likes per Dataset", "🚀 Most Downloaded Dataset", "📈 Most Download Count", "❤️ Most Liked Dataset", "👍 Most Like Count", "🔥 Trending Dataset", "👑 Best Rank at Trending Datasets", "🏷️ Type"] headers_spaces = ["🔢 Serial Number", "👤 Author Name", "👍 Total Likes", "🚀 Number of Spaces", "📈 Average Likes per Space", "❤️ Most Liked Space", "👍 Most Like Count", "🔥 Trending Space", "👑 Best Rank at Trending Spaces", "🏷️ Type"] def apply_headers(df, headers): tmp = df.copy() tmp.columns = headers return tmp def get_time(): return datetime.datetime.now().strftime("%d-%m-%Y %H-%M") def upload_datasets(dfs): time = get_time() operations = [CommitOperationAdd(path_in_repo=f"{time}/models_df.csv", path_or_fileobj=(dfs[0].to_csv()).encode()), CommitOperationAdd(path_in_repo=f"{time}/datasets_df.csv", path_or_fileobj=(dfs[1].to_csv()).encode()), CommitOperationAdd(path_in_repo=f"{time}/spaces_df.csv", path_or_fileobj=(dfs[2].to_csv()).encode())] return (create_commit(repo_id="Weyaxi/huggingface-leaderboard-history", operations=operations, commit_message=f"Uploading history of {time}", repo_type="dataset", token=HF_TOKEN)) def get_most(df_for_most_function): download_sorted_df = df_for_most_function.sort_values(by=['downloads'], ascending=False) most_downloaded = download_sorted_df.iloc[0] like_sorted_df = df_for_most_function.sort_values(by=['likes'], ascending=False) most_liked = like_sorted_df.iloc[0] return {"Most Download": {"id": most_downloaded['id'], "downloads": most_downloaded['downloads'], "likes": most_downloaded['likes']}, "Most Likes": {"id": most_liked['id'], "downloads": most_liked['downloads'], "likes": most_liked['likes']}} def get_sum(df_for_sum_function): sum_downloads = sum(df_for_sum_function['downloads'].tolist()) sum_likes = sum(df_for_sum_function['likes'].tolist()) return {"Downloads": sum_downloads, "Likes": sum_likes} def get_openllm_leaderboard(): try: data = get_json_format_data() finished_models = get_datas(data) df = pd.DataFrame(finished_models) return df['Model'].tolist() except Exception as e: # something is wrong about the leaderboard so return empty list print(e) return [] def get_ranking(model_list, target_org): if not model_list: return "Error on Leaderboard" for index, model in enumerate(model_list): if model.split("/")[0].lower() == target_org.lower(): return [index + 1, model] return "Not Found" def get_models(which_one): if which_one == "models": data = api.list_models() elif which_one == "datasets": data = api.list_datasets() elif which_one == "spaces": data = api.list_spaces() all_list = [] for i in tqdm(data, desc=f"Scraping {which_one}", position=0, leave=True): i = i.__dict__ id = i["id"].split("/") if len(id) != 1: json_format_data = {"author": id[0], "id": "/".join(id), "downloads": i['downloads'], "likes": i['likes']} if which_one != "spaces" else {"author": id[0], "id": "/".join(id), "downloads": 0, "likes": i['likes']} all_list.append(json_format_data) return all_list def search(models_dict, author_name): return pd.DataFrame(models_dict.get(author_name, [])) def group_models_by_author(all_things): models_by_author = {} for model in all_things: author_name = model['author'] if author_name not in models_by_author: models_by_author[author_name] = [] models_by_author[author_name].append(model) return models_by_author def make_leaderboard(orgs, users, which_one, data): data_rows = [] open_llm_leaderboard = get_openllm_leaderboard() if which_one == "models" else None trend = get_trending_list(1, which_one) hepsi = [orgs, users] for index, orgs in enumerate(hepsi): org_or_user = "Organization" if index == 0 else "User" for org in tqdm(orgs, desc=f"Proccesing: ({which_one}) ({org_or_user})", position=0, leave=True): rank = get_ranking_trend(trend, org) df = search(data, org) if len(df) == 0: continue num_things = len(df) sum_info = get_sum(df) most_info = get_most(df) if which_one == "models": open_llm_leaderboard_get_org = get_ranking(open_llm_leaderboard, org) data_rows.append({ "Author Name": org, "Total Downloads": sum_info["Downloads"], "Total Likes": sum_info["Likes"], "Number of Models": num_things, "Best Model On Open LLM Leaderboard": open_llm_leaderboard_get_org[1] if open_llm_leaderboard_get_org != "Not Found" else open_llm_leaderboard_get_org, "Best Rank On Open LLM Leaderboard": open_llm_leaderboard_get_org[0] if open_llm_leaderboard_get_org != "Not Found" else open_llm_leaderboard_get_org, "Average Downloads per Model": int(sum_info["Downloads"] / num_things) if num_things != 0 else 0, "Average Likes per Model": int(sum_info["Likes"] / num_things) if num_things != 0 else 0, "Most Downloaded Model": most_info["Most Download"]["id"], "Most Download Count": most_info["Most Download"]["downloads"], "Most Liked Model": most_info["Most Likes"]["id"], "Most Like Count": most_info["Most Likes"]["likes"], "Trending Model": rank['id'], "Best Rank at Trending Models": rank['rank'], "Type": org_or_user }) elif which_one == "datasets": data_rows.append({ "Author Name": org, "Total Downloads": sum_info["Downloads"], "Total Likes": sum_info["Likes"], "Number of Datasets": num_things, "Average Downloads per Dataset": int(sum_info["Downloads"] / num_things) if num_things != 0 else 0, "Average Likes per Dataset": int(sum_info["Likes"] / num_things) if num_things != 0 else 0, "Most Downloaded Dataset": most_info["Most Download"]["id"], "Most Download Count": most_info["Most Download"]["downloads"], "Most Liked Dataset": most_info["Most Likes"]["id"], "Most Like Count": most_info["Most Likes"]["likes"], "Trending Dataset": rank['id'], "Best Rank at Trending Datasets": rank['rank'], "Type": org_or_user }) elif which_one == "spaces": data_rows.append({ "Author Name": org, "Total Likes": sum_info["Likes"], "Number of Spaces": num_things, "Average Likes per Space": int(sum_info["Likes"] / num_things) if num_things != 0 else 0, "Most Liked Space": most_info["Most Likes"]["id"], "Most Like Count": most_info["Most Likes"]["likes"], "Trending Space": rank['id'], "Best Rank at Trending Spaces": rank['rank'], "Type": org_or_user }) leaderboard = pd.DataFrame(data_rows) temp = ["Total Downloads"] if which_one != "spaces" else ["Total Likes"] leaderboard = leaderboard.sort_values(by=temp, ascending=False) leaderboard.insert(0, "Serial Number", range(1, len(leaderboard) + 1)) return leaderboard def clickable(x, which_one): if which_one == "models": if x != "Not Found": return f'{x}' else: return "Not Found" else: if x != "Not Found": return f'{x}' return "Not Found" def models_df_to_clickable(df, columns, which_one): for column in columns: if column == "Author Name": df[column] = df[column].apply(lambda x: clickable(x, "models")) else: df[column] = df[column].apply(lambda x: clickable(x, which_one)) return df def get_trending_list(pages, which_one): trending_list = [] for i in range(pages): json_data = requests.get(f"https://huggingface.co/{which_one}-json?p={i}").json() for thing in json_data[which_one]: id = thing["id"] likes = thing["likes"] if which_one != "spaces": downloads = thing["downloads"] trending_list.append({"id": id, "downloads": downloads, "likes": likes}) else: trending_list.append({"id": id, "likes": likes}) return trending_list def get_ranking_trend(json_data, org_name): names = [item['id'].split("/")[0] for item in json_data] models = [item['id'] for item in json_data] if org_name in names: temp = names.index(org_name) return {"id": models[temp], "rank": temp + 1} else: return {"id": "Not Found", "rank": "Not Found"} def fetch_data_from_url(url): response = requests.get(url) if response.status_code == 200: data = response.text.splitlines() return [line.rstrip("\n") for line in data] else: print(f"Failed to fetch data from URL: {url}") return [] user_names_url = "https://huggingface.co/datasets/Weyaxi/user-orgs-huggingface-leaderboard/raw/main/user_names.txt" org_names_url = "https://huggingface.co/datasets/Weyaxi/user-orgs-huggingface-leaderboard/raw/main/org_names.txt" user_names_in_list = fetch_data_from_url(user_names_url) org_names_in_list = fetch_data_from_url(org_names_url) datetime_now = str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M")) INTRODUCTION_TEXT = f""" 🎯 The Leaderboard aims to track users and organizations rankings and stats. This space is inspired by the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). ## Available Dataframes: - 🏛️ Models - 📊 Datasets - 🚀 Spaces ## Backend 🛠️ The leaderboard's backend mainly runs on the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api). 📒 **Note:** In the model's dataframe, there are some columns related to the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). This data is also retrieved through web scraping. 📒 **Note:** In trending models/datasets/spaces, first 300 models/datasets/spaces is being retrieved from huggingface. ## 🔍 Searching Organizations and Users You can search for organizations and users in the Search tab. In this tab, you can view an author's stats even if they are not at the top of the leaderboard. ## Filtering Organizations and Users 🧮 You can filter the dataset to show only Organizations or Users! ✅ Use checkboxs for this! ## Last Update ⌛ This space is last updated in **{datetime_now}**. """ def get_avatar(user_name, user): try: url = f"https://huggingface.co/{user_name}" response = requests.get(url) soup = BeautifulSoup(response.text, "html.parser") if user: avatar = soup.find("img", {"class": "h-32 w-32 overflow-hidden rounded-full shadow-inner lg:h-48 lg:w-48"})['src'] full = soup.find("span", {"class": "mr-3 leading-6"}).text return [avatar, full] else: avatar = soup.find("img", {"class": "mb-2 mr-4 h-12 w-12 flex-none overflow-hidden rounded-lg sm:mb-0 sm:h-20 sm:w-20"})['src'] full = soup.find("h1", {"class": "mb-2 mr-3 text-2xl font-bold md:mb-0"}).text return [avatar, full] except Exception as e: print(e) return "Error" def update_table(orgs, users, how_much=400, return_all=False): dataFrame = models_df if not orgs and users: filtered_df = dataFrame[(dataFrame['Type'] != 'Organization') | (dataFrame['Type'] == 'User')] elif orgs and not users: filtered_df = dataFrame[(dataFrame['Type'] == 'Organization') | (dataFrame['Type'] != 'User')] elif orgs and users: filtered_df = dataFrame[(dataFrame['Type'] == 'Organization') | (dataFrame['Type'] == 'User')] else: return apply_headers(dataFrame.head(0), headers_models) if return_all: return apply_headers(filtered_df, headers_models) else: return apply_headers(filtered_df, headers_models).head(how_much) def update_table_datasets(orgs, users, how_much=250, return_all=False): dataFrame = dataset_df if not orgs and users: filtered_df = dataFrame[(dataFrame['Type'] != 'Organization') | (dataFrame['Type'] == 'User')] elif orgs and not users: filtered_df = dataFrame[(dataFrame['Type'] == 'Organization') | (dataFrame['Type'] != 'User')] elif orgs and users: filtered_df = dataFrame[(dataFrame['Type'] == 'Organization') | (dataFrame['Type'] == 'User')] else: return apply_headers(dataFrame, headers_datasets).head(0) if return_all: return apply_headers(filtered_df, headers_datasets) else: return apply_headers(filtered_df, headers_datasets).head(how_much) def update_table_spaces(orgs, users, how_much=200, return_all=False): dataFrame = spaces_df if not orgs and users: filtered_df = dataFrame[(dataFrame['Type'] != 'Organization') | (dataFrame['Type'] == 'User')] elif orgs and not users: filtered_df = dataFrame[(dataFrame['Type'] == 'Organization') | (dataFrame['Type'] != 'User')] elif orgs and users: filtered_df = dataFrame[(dataFrame['Type'] == 'Organization') | (dataFrame['Type'] == 'User')] else: return apply_headers(dataFrame, headers_spaces).head(0) if return_all: return apply_headers(filtered_df, headers_spaces) else: return apply_headers(filtered_df, headers_spaces).head(how_much) def search_df(author): sonuc_models, sonuc_datasets, sonuc_spaces =[], [], [] org_or_user = "User" if author in user_names_in_list else "Org" a = get_avatar(author, True if org_or_user=="User" else False) if a == "Error": return "Error happened, maybe author name is not valid." # Search in models_df df = models_df for index, item in enumerate(df['Author Name'].tolist()): if f'"https://huggingface.co/{author}"' in item: sonuc_models = df.iloc[index] break # Break out of the loop once a match is found # Search in dataset_df df = dataset_df for index, item in enumerate(df['Author Name'].tolist()): if f'"https://huggingface.co/{author}"' in item: sonuc_datasets = df.iloc[index] break # Break out of the loop once a match is found # Search in spaces_df df = spaces_df for index, item in enumerate(df['Author Name'].tolist()): if f'"https://huggingface.co/{author}"' in item: sonuc_spaces = df.iloc[index] break # Break out of the loop once a match is found author_name = sonuc_models['Author Name'] if len(sonuc_models) > 0 else "Not Found" global_rank = sonuc_models['Serial Number'] if len(sonuc_models) > 0 else "Not Found" if len(sonuc_models) > 0: if org_or_user == "User": user_rank = filtered_model_users.index(f'{author}') else: user_rank = filtered_model_orgs.index(f'{author}') else: user_rank = "Not Found" global_datasets = sonuc_datasets['Serial Number'] if len(sonuc_datasets) > 0 else "Not Found" if len(sonuc_datasets) > 0: if org_or_user == "User": user_datasets = filtered_datasets_users.index(f'{author}') else: user_datasets = filtered_datasets_orgs.index(f'{author}') else: user_datasets = "Not Found" global_spaces = sonuc_spaces['Serial Number'] if len(sonuc_spaces) > 0 else "Not Found" if len(sonuc_spaces) > 0: if org_or_user == "User": user_spaces = filtered_spaces_users.index(f'{author}') else: user_spaces = filtered_spaces_orgs.index(f'{author}') else: user_spaces = "Not Found" total_model_downloads = sonuc_models['Total Downloads'] if len(sonuc_models) > 0 else "Not Found" total_model_likes = sonuc_models['Total Likes'] if len(sonuc_models) > 0 else "Not Found" model_count = sonuc_models['Number of Models'] if len(sonuc_models) > 0 else "Not Found" total_dataset_downloads = sonuc_datasets['Total Downloads'] if len(sonuc_datasets) > 0 else "Not Found" total_dataset_likes = sonuc_datasets['Total Likes'] if len(sonuc_datasets) > 0 else "Not Found" dataset_count = sonuc_datasets['Number of Datasets'] if len(sonuc_datasets) > 0 else "Not Found" total_space_likes = sonuc_spaces['Total Likes'] if len(sonuc_spaces) > 0 else "Not Found" space_count = sonuc_spaces['Number of Spaces'] if len(sonuc_spaces) > 0 else "Not Found" markdown_text = f'''