now with widget support
Browse files
app.py
CHANGED
@@ -1,11 +1,15 @@
|
|
1 |
import os
|
2 |
os.system("wget https://raw.githubusercontent.com/Weyaxi/scrape-open-llm-leaderboard/main/openllm.py")
|
3 |
from huggingface_hub import CommitOperationAdd, create_commit, HfApi, HfFileSystem, login
|
4 |
-
from huggingface_hub
|
5 |
-
from
|
6 |
-
|
|
|
|
|
|
|
7 |
import requests
|
8 |
import pandas as pd
|
|
|
9 |
|
10 |
api = HfApi()
|
11 |
fs = HfFileSystem()
|
@@ -25,49 +29,163 @@ def get_details_url(repo):
|
|
25 |
return f"https://huggingface.co/datasets/open-llm-leaderboard/details_{author}__{model}"
|
26 |
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def get_eval_results(repo):
|
29 |
results = search(df, repo)
|
|
|
|
|
|
|
|
|
30 |
|
31 |
text = f"""
|
32 |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
33 |
Detailed results can be found [here]({get_details_url(repo)})
|
34 |
|
35 |
-
|
36 |
-
|-----------------------|---------------------------|
|
37 |
-
| Avg. | {results['Average ⬆️']} |
|
38 |
-
| ARC (25-shot) | {results['ARC']} |
|
39 |
-
| HellaSwag (10-shot) | {results['HellaSwag']} |
|
40 |
-
| MMLU (5-shot) | {results['MMLU']} |
|
41 |
-
| TruthfulQA (0-shot) | {results['TruthfulQA']} |
|
42 |
-
| Winogrande (5-shot) | {results['Winogrande']} |
|
43 |
-
| GSM8K (5-shot) | {results['GSM8K']} |
|
44 |
"""
|
45 |
return text
|
46 |
|
47 |
|
48 |
-
|
49 |
-
|
|
|
50 |
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
|
|
|
|
56 |
|
57 |
-
def commit(hf_token, repo):
|
58 |
login(hf_token)
|
|
|
|
|
59 |
try:
|
60 |
try: # check if there is a readme already
|
61 |
-
readme_text =
|
62 |
-
except:
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
liste = [CommitOperationAdd(path_in_repo="README.md", path_or_fileobj=readme_text.encode())]
|
66 |
-
commit = (create_commit(repo_id=repo, operations=liste, commit_message=
|
|
|
67 |
return commit
|
68 |
-
except Exception as e: # unexpected error
|
69 |
-
return e
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
demo = gr.Interface(fn=commit, inputs=["text", "text"], outputs="text")
|
73 |
|
|
|
1 |
import os
|
2 |
os.system("wget https://raw.githubusercontent.com/Weyaxi/scrape-open-llm-leaderboard/main/openllm.py")
|
3 |
from huggingface_hub import CommitOperationAdd, create_commit, HfApi, HfFileSystem, login
|
4 |
+
from huggingface_hub import ModelCardData, EvalResult, ModelCard
|
5 |
+
from huggingface_hub.repocard_data import eval_results_to_model_index
|
6 |
+
from huggingface_hub.repocard import RepoCard
|
7 |
+
from openllm import get_json_format_data, get_datas
|
8 |
+
from tqdm import tqdm
|
9 |
+
import time
|
10 |
import requests
|
11 |
import pandas as pd
|
12 |
+
from pytablewriter import MarkdownTableWriter
|
13 |
|
14 |
api = HfApi()
|
15 |
fs = HfFileSystem()
|
|
|
29 |
return f"https://huggingface.co/datasets/open-llm-leaderboard/details_{author}__{model}"
|
30 |
|
31 |
|
32 |
+
def get_query_url(repo):
|
33 |
+
return f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query={repo}"
|
34 |
+
|
35 |
+
|
36 |
+
desc = """
|
37 |
+
This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr
|
38 |
+
|
39 |
+
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.
|
40 |
+
|
41 |
+
If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions
|
42 |
+
"""
|
43 |
+
|
44 |
+
|
45 |
+
def get_task_summary(results):
|
46 |
+
return {
|
47 |
+
"ARC":
|
48 |
+
{"dataset_type":"ai2_arc",
|
49 |
+
"dataset_name":"AI2 Reasoning Challenge (25-Shot)",
|
50 |
+
"dataset_short_name": "ARC (25-shot)",
|
51 |
+
"metric_type":"acc_norm",
|
52 |
+
"metric_value":results["ARC"],
|
53 |
+
"dataset_config":"ARC-Challenge",
|
54 |
+
"dataset_split":"test",
|
55 |
+
"dataset_revision":None,
|
56 |
+
"dataset_args":{"num_few_shot": 25},
|
57 |
+
"metric_name":"normalized accuracy"
|
58 |
+
},
|
59 |
+
"HellaSwag":
|
60 |
+
{"dataset_type":"hellaswag",
|
61 |
+
"dataset_name":"HellaSwag (10-Shot)",
|
62 |
+
"dataset_short_name": "HellaSwag (10-shot)",
|
63 |
+
"metric_type":"acc_norm",
|
64 |
+
"metric_value":results["HellaSwag"],
|
65 |
+
"dataset_config":None,
|
66 |
+
"dataset_split":"validation",
|
67 |
+
"dataset_revision":None,
|
68 |
+
"dataset_args":{"num_few_shot": 10},
|
69 |
+
"metric_name":"normalized accuracy"
|
70 |
+
},
|
71 |
+
"MMLU":
|
72 |
+
{
|
73 |
+
"dataset_type":"cais/mmlu",
|
74 |
+
"dataset_name":"MMLU (5-Shot)",
|
75 |
+
"dataset_short_name": "MMLU (5-Shot)",
|
76 |
+
"metric_type":"acc",
|
77 |
+
"metric_value":results["MMLU"],
|
78 |
+
"dataset_config":"all",
|
79 |
+
"dataset_split":"test",
|
80 |
+
"dataset_revision":None,
|
81 |
+
"dataset_args":{"num_few_shot": 5},
|
82 |
+
"metric_name":"accuracy"
|
83 |
+
},
|
84 |
+
"TruthfulQA":
|
85 |
+
{
|
86 |
+
"dataset_type":"truthful_qa",
|
87 |
+
"dataset_name":"TruthfulQA (0-shot)",
|
88 |
+
"dataset_short_name": "TruthfulQA (0-shot)",
|
89 |
+
"metric_type":"mc2",
|
90 |
+
"metric_value":results["TruthfulQA"],
|
91 |
+
"dataset_config":"multiple_choice",
|
92 |
+
"dataset_split":"validation",
|
93 |
+
"dataset_revision":None,
|
94 |
+
"dataset_args":{"num_few_shot": 0},
|
95 |
+
"metric_name":None
|
96 |
+
},
|
97 |
+
"Winogrande":
|
98 |
+
{
|
99 |
+
"dataset_type":"winogrande",
|
100 |
+
"dataset_name":"Winogrande (5-shot)",
|
101 |
+
"dataset_short_name": "Winogrande (5-shot)",
|
102 |
+
"metric_type":"acc",
|
103 |
+
"metric_value":results["Winogrande"],
|
104 |
+
"dataset_config":"winogrande_xl",
|
105 |
+
"dataset_split":"validation",
|
106 |
+
"dataset_args":{"num_few_shot": 5},
|
107 |
+
"metric_name":"accuracy"
|
108 |
+
},
|
109 |
+
"GSM8K":
|
110 |
+
{
|
111 |
+
"dataset_type":"gsm8k",
|
112 |
+
"dataset_name":"GSM8k (5-shot)",
|
113 |
+
"dataset_short_name": "GSM8k (5-shot)",
|
114 |
+
"metric_type":"acc",
|
115 |
+
"metric_value":results["GSM8K"],
|
116 |
+
"dataset_config":"main",
|
117 |
+
"dataset_split":"test",
|
118 |
+
"dataset_args":{"num_few_shot": 5},
|
119 |
+
"metric_name":"accuracy"
|
120 |
+
}
|
121 |
+
}
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
def get_eval_results(repo):
|
126 |
results = search(df, repo)
|
127 |
+
task_summary = get_task_summary(results)
|
128 |
+
md_writer = MarkdownTableWriter()
|
129 |
+
md_writer.headers = ["Metric", "Value"]
|
130 |
+
md_writer.value_matrix = [["Avg.", results['Average ⬆️']]] + [[v["dataset_short_name"], v["metric_value"]] for v in task_summary.items()]
|
131 |
|
132 |
text = f"""
|
133 |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
134 |
Detailed results can be found [here]({get_details_url(repo)})
|
135 |
|
136 |
+
{md_writer.dumps()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
"""
|
138 |
return text
|
139 |
|
140 |
|
141 |
+
def get_edited_yaml_readme(repo):
|
142 |
+
card = ModelCard.load(repo)
|
143 |
+
results = search(df, repo)
|
144 |
|
145 |
+
common = {"task_type": 'text-generation', "task_name": 'Text Generation', "source_name": "Open LLM Leaderboard", "source_url": f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query={repo}"}
|
146 |
|
147 |
+
tasks_results = get_task_summary(results)
|
148 |
+
|
149 |
+
if not card.data['eval_results']: # No results reported yet, we initialize the metadata
|
150 |
+
card.data["model-index"] = eval_results_to_model_index(repo.split('/')[1], [EvalResult(**task, **common) for task in tasks_results.values()])
|
151 |
+
else: # We add the new evaluations
|
152 |
+
for task in tasks_results.values():
|
153 |
+
cur_result = EvalResult(**task, **common)
|
154 |
+
if any(result.is_equal_except_value(cur_result) for result in card.data['eval_results']):
|
155 |
+
continue
|
156 |
+
card.data['eval_results'].append(cur_result)
|
157 |
|
158 |
+
return str(card)
|
159 |
+
|
160 |
|
161 |
+
def commit(hf_token, repo, pr_number=None, message="Adding Evaluation Results"): # specify pr number if you want to edit it, don't if you don't want
|
162 |
login(hf_token)
|
163 |
+
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True}
|
164 |
+
|
165 |
try:
|
166 |
try: # check if there is a readme already
|
167 |
+
readme_text = get_edited_yaml_readme(repo) + get_eval_results(repo)
|
168 |
+
except Exception as e:
|
169 |
+
if "Repo card metadata block was not found." in str(e): # There is no readme
|
170 |
+
readme_text = get_edited_yaml_readme(repo)
|
171 |
+
else:
|
172 |
+
print(f"Something went wrong: {e}")
|
173 |
|
174 |
liste = [CommitOperationAdd(path_in_repo="README.md", path_or_fileobj=readme_text.encode())]
|
175 |
+
commit = (create_commit(repo_id=repo, operations=liste, commit_message=message, commit_description=desc, repo_type="model", **edited).pr_url)
|
176 |
+
|
177 |
return commit
|
|
|
|
|
178 |
|
179 |
+
except Exception as e:
|
180 |
+
|
181 |
+
if "Discussions are disabled for this repo" in str(e):
|
182 |
+
return "Discussions disabled"
|
183 |
+
elif "Cannot access gated repo" in str(e):
|
184 |
+
return "Gated repo"
|
185 |
+
elif "Repository Not Found" in str(e):
|
186 |
+
return "Repository Not Found"
|
187 |
+
else:
|
188 |
+
return e
|
189 |
|
190 |
demo = gr.Interface(fn=commit, inputs=["text", "text"], outputs="text")
|
191 |
|