File size: 2,388 Bytes
fc1a577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# MIT LICENSE Copyright (c) 2019 linzai
# Originally comes from https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB

import numpy as np


def area_of(left_top, right_bottom):
    """Compute the areas of rectangles given two corners.

    Args:
        left_top (N, 2): left top corner.
        right_bottom (N, 2): right bottom corner.

    Returns:
        area (N): return the area.
    """
    hw = np.clip(right_bottom - left_top, 0.0, None)
    return hw[..., 0] * hw[..., 1]


def iou_of(boxes0, boxes1, eps=1e-5):
    """Return intersection-over-union (Jaccard index) of boxes.

    Args:
        boxes0 (N, 4): ground truth boxes.
        boxes1 (N or 1, 4): predicted boxes.
        eps: a small number to avoid 0 as denominator.
    Returns:
        iou (N): IoU values.
    """
    overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
    overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])

    overlap_area = area_of(overlap_left_top, overlap_right_bottom)
    area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
    area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
    return overlap_area / (area0 + area1 - overlap_area + eps)


def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
    """

    Args:
        box_scores (N, 5): boxes in corner-form and probabilities.
        iou_threshold: intersection over union threshold.
        top_k: keep top_k results. If k <= 0, keep all the results.
        candidate_size: only consider the candidates with the highest scores.
    Returns:
         picked: a list of indexes of the kept boxes
    """
    scores = box_scores[:, -1]
    boxes = box_scores[:, :-1]
    picked = []
    # _, indexes = scores.sort(descending=True)
    indexes = np.argsort(scores)
    # indexes = indexes[:candidate_size]
    indexes = indexes[-candidate_size:]
    while len(indexes) > 0:
        # current = indexes[0]
        current = indexes[-1]
        picked.append(current)
        if 0 < top_k == len(picked) or len(indexes) == 1:
            break
        current_box = boxes[current, :]
        # indexes = indexes[1:]
        indexes = indexes[:-1]
        rest_boxes = boxes[indexes, :]
        iou = iou_of(
            rest_boxes,
            np.expand_dims(current_box, axis=0),
        )
        indexes = indexes[iou <= iou_threshold]

    return box_scores[picked, :]