Spaces:
Running
on
Zero
Running
on
Zero
Helw150
commited on
Commit
•
5279276
1
Parent(s):
8aaf9c8
Orca!
Browse files
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import time
|
2 |
import traceback
|
3 |
from dataclasses import dataclass, field
|
@@ -5,6 +7,7 @@ from dataclasses import dataclass, field
|
|
5 |
import gradio as gr
|
6 |
import librosa
|
7 |
import numpy as np
|
|
|
8 |
import soundfile as sf
|
9 |
import spaces
|
10 |
import torch
|
@@ -12,7 +15,8 @@ import xxhash
|
|
12 |
from datasets import Audio
|
13 |
from transformers import AutoModel
|
14 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
15 |
-
|
|
|
16 |
|
17 |
if gr.NO_RELOAD:
|
18 |
diva_model = AutoModel.from_pretrained(
|
@@ -48,10 +52,8 @@ def diva_audio(audio_input, do_sample=False, temperature=0.001, prev_outs=None):
|
|
48 |
|
49 |
@dataclass
|
50 |
class AppState:
|
51 |
-
stream: np.ndarray | None = None
|
52 |
-
sampling_rate: int = 0
|
53 |
-
stopped: bool = False
|
54 |
conversation: list = field(default_factory=list)
|
|
|
55 |
model_outs: any = None
|
56 |
|
57 |
|
@@ -63,16 +65,16 @@ def process_audio(audio: tuple, state: AppState):
|
|
63 |
def response(state: AppState, audio: tuple):
|
64 |
if not audio:
|
65 |
return AppState()
|
66 |
-
state.stream = audio[1]
|
67 |
-
state.sampling_rate = audio[0]
|
68 |
|
69 |
-
file_name = f"/tmp/{xxhash.xxh32(bytes(
|
70 |
|
71 |
-
sf.write(file_name,
|
72 |
|
73 |
state.conversation.append(
|
74 |
{"role": "user", "content": {"path": file_name, "mime_type": "audio/wav"}}
|
75 |
)
|
|
|
|
|
76 |
if spaces.config.Config.zero_gpu:
|
77 |
if state.model_outs is not None:
|
78 |
state.model_outs = tuple(
|
@@ -88,18 +90,23 @@ def response(state: AppState, audio: tuple):
|
|
88 |
causal_outs = state.model_outs
|
89 |
state.model_outs = None
|
90 |
prev_outs = causal_outs
|
91 |
-
|
92 |
for resp, outs in diva_audio(
|
93 |
-
(
|
94 |
prev_outs=(prev_outs if prev_outs is not None else None),
|
95 |
):
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
del outs.logits
|
105 |
del outs.hidden_states
|
@@ -107,9 +114,21 @@ def response(state: AppState, audio: tuple):
|
|
107 |
outs = tuple(
|
108 |
tuple(vec.cpu().numpy() for vec in tup) for tup in outs.past_key_values
|
109 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
yield (
|
111 |
AppState(conversation=state.conversation, model_outs=outs),
|
112 |
state.conversation,
|
|
|
113 |
)
|
114 |
|
115 |
|
@@ -190,6 +209,8 @@ with gr.Blocks(theme=theme, js=js) as demo:
|
|
190 |
)
|
191 |
with gr.Row():
|
192 |
chatbot = gr.Chatbot(label="Conversation", type="messages")
|
|
|
|
|
193 |
state = gr.State(value=AppState())
|
194 |
stream = input_audio.start_recording(
|
195 |
process_audio,
|
@@ -197,15 +218,15 @@ with gr.Blocks(theme=theme, js=js) as demo:
|
|
197 |
[input_audio, state],
|
198 |
)
|
199 |
respond = input_audio.stop_recording(
|
200 |
-
response, [state, input_audio], [state, chatbot]
|
201 |
)
|
202 |
-
restart =
|
203 |
lambda state: state, state, state, js=js_reset
|
204 |
)
|
205 |
|
206 |
cancel = gr.Button("Restart Conversation", variant="stop")
|
207 |
cancel.click(
|
208 |
-
lambda: (AppState(
|
209 |
None,
|
210 |
[state, input_audio],
|
211 |
cancels=[respond, restart],
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
import time
|
4 |
import traceback
|
5 |
from dataclasses import dataclass, field
|
|
|
7 |
import gradio as gr
|
8 |
import librosa
|
9 |
import numpy as np
|
10 |
+
import pvorca
|
11 |
import soundfile as sf
|
12 |
import spaces
|
13 |
import torch
|
|
|
15 |
from datasets import Audio
|
16 |
from transformers import AutoModel
|
17 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
18 |
+
|
19 |
+
orca = pvorca.create(access_key=os.environ.get("ORCA_KEY"))
|
20 |
|
21 |
if gr.NO_RELOAD:
|
22 |
diva_model = AutoModel.from_pretrained(
|
|
|
52 |
|
53 |
@dataclass
|
54 |
class AppState:
|
|
|
|
|
|
|
55 |
conversation: list = field(default_factory=list)
|
56 |
+
stopped: bool = False
|
57 |
model_outs: any = None
|
58 |
|
59 |
|
|
|
65 |
def response(state: AppState, audio: tuple):
|
66 |
if not audio:
|
67 |
return AppState()
|
|
|
|
|
68 |
|
69 |
+
file_name = f"/tmp/{xxhash.xxh32(bytes(audio[1])).hexdigest()}.wav"
|
70 |
|
71 |
+
sf.write(file_name, audio[1], audio[0], format="wav")
|
72 |
|
73 |
state.conversation.append(
|
74 |
{"role": "user", "content": {"path": file_name, "mime_type": "audio/wav"}}
|
75 |
)
|
76 |
+
state.conversation.append({"role": "assistant", "content": ""})
|
77 |
+
yield state, state.conversation, None
|
78 |
if spaces.config.Config.zero_gpu:
|
79 |
if state.model_outs is not None:
|
80 |
state.model_outs = tuple(
|
|
|
90 |
causal_outs = state.model_outs
|
91 |
state.model_outs = None
|
92 |
prev_outs = causal_outs
|
93 |
+
stream = orca.stream_open()
|
94 |
for resp, outs in diva_audio(
|
95 |
+
(audio[0], audio[1]),
|
96 |
prev_outs=(prev_outs if prev_outs is not None else None),
|
97 |
):
|
98 |
+
prev_resp = state.conversation[-1]["content"]
|
99 |
+
state.conversation[-1]["content"] = resp
|
100 |
+
pcm = stream.synthesize(resp[len(prev_resp) :])
|
101 |
+
audio_chunk = None
|
102 |
+
if pcm is not None:
|
103 |
+
mp3_io = io.BytesIO()
|
104 |
+
sf.write(
|
105 |
+
mp3_io, np.asarray(pcm).astype(np.int16), orca.sample_rate, format="mp3"
|
106 |
+
)
|
107 |
+
audio_chunk = mp3_io.getvalue()
|
108 |
+
mp3_io.close()
|
109 |
+
yield state, state.conversation, audio_chunk
|
110 |
|
111 |
del outs.logits
|
112 |
del outs.hidden_states
|
|
|
114 |
outs = tuple(
|
115 |
tuple(vec.cpu().numpy() for vec in tup) for tup in outs.past_key_values
|
116 |
)
|
117 |
+
audio_chunk = None
|
118 |
+
pcm = stream.flush()
|
119 |
+
if pcm is not None:
|
120 |
+
audio_chunk = np.asarray(pcm).tobytes()
|
121 |
+
mp3_io = io.BytesIO()
|
122 |
+
sf.write(
|
123 |
+
mp3_io, np.asarray(pcm).astype(np.int16), orca.sample_rate, format="mp3"
|
124 |
+
)
|
125 |
+
audio_chunk = mp3_io.getvalue()
|
126 |
+
mp3_io.close()
|
127 |
+
stream.close()
|
128 |
yield (
|
129 |
AppState(conversation=state.conversation, model_outs=outs),
|
130 |
state.conversation,
|
131 |
+
audio_chunk,
|
132 |
)
|
133 |
|
134 |
|
|
|
209 |
)
|
210 |
with gr.Row():
|
211 |
chatbot = gr.Chatbot(label="Conversation", type="messages")
|
212 |
+
with gr.Row():
|
213 |
+
output_audio = gr.Audio(label="Output Audio", streaming=True, autoplay=True)
|
214 |
state = gr.State(value=AppState())
|
215 |
stream = input_audio.start_recording(
|
216 |
process_audio,
|
|
|
218 |
[input_audio, state],
|
219 |
)
|
220 |
respond = input_audio.stop_recording(
|
221 |
+
response, [state, input_audio], [state, chatbot, output_audio]
|
222 |
)
|
223 |
+
restart = output_audio.stop(start_recording_user, [state], [input_audio]).then(
|
224 |
lambda state: state, state, state, js=js_reset
|
225 |
)
|
226 |
|
227 |
cancel = gr.Button("Restart Conversation", variant="stop")
|
228 |
cancel.click(
|
229 |
+
lambda: (AppState(), gr.Audio(recording=False)),
|
230 |
None,
|
231 |
[state, input_audio],
|
232 |
cancels=[respond, restart],
|