File size: 5,185 Bytes
2eaa44a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
import os
import torch

# Import eSpeak TTS pipeline
from tts_cli import (
    build_model as build_model_espeak,
    generate_long_form_tts as generate_long_form_tts_espeak,
)

# Import OpenPhonemizer TTS pipeline
from tts_cli_op import (
    build_model as build_model_open,
    generate_long_form_tts as generate_long_form_tts_open,
)
from pretrained_models import Kokoro

# ---------------------------------------------------------------------
# Path to models and voicepacks
# ---------------------------------------------------------------------
MODELS_DIR = "pretrained_models/Kokoro"
VOICES_DIR = "pretrained_models/Kokoro/voices"


# ---------------------------------------------------------------------
# List the models (.pth) and voices (.pt)
# ---------------------------------------------------------------------
def get_models():
    return sorted([f for f in os.listdir(MODELS_DIR) if f.endswith(".pth")])


def get_voices():
    return sorted([f for f in os.listdir(VOICES_DIR) if f.endswith(".pt")])


# ---------------------------------------------------------------------
# We'll map engine selection -> (build_model_func, generate_func)
# ---------------------------------------------------------------------
ENGINES = {
    "espeak": (build_model_espeak, generate_long_form_tts_espeak),
    "openphonemizer": (build_model_open, generate_long_form_tts_open),
}


# ---------------------------------------------------------------------
# The main inference function called by Gradio
# ---------------------------------------------------------------------
def tts_inference(text, engine, model_file, voice_file, speed=1.0):
    """
    text:        Input string
    engine:      "espeak" or "openphonemizer"
    model_file:  Selected .pth from the models folder
    voice_file:  Selected .pt from the voices folder
    speed:       Speech speed
    """
    # 1) Map engine to the correct build_model + generate_long_form_tts
    build_fn, gen_fn = ENGINES[engine]

    # 2) Prepare paths
    model_path = os.path.join(MODELS_DIR, model_file)
    voice_path = os.path.join(VOICES_DIR, voice_file)

    # 3) Decide device
    device = "cuda" if torch.cuda.is_available() else "cpu"

    # 4) Load model
    model = build_fn(model_path, device=device)
    # Set submodules eval
    for k, subm in model.items():
        if hasattr(subm, "eval"):
            subm.eval()

    # 5) Load voicepack
    voicepack = torch.load(voice_path, map_location=device)
    if hasattr(voicepack, "eval"):
        voicepack.eval()

    # 6) Generate TTS
    audio, phonemes = gen_fn(model, text, voicepack, speed=speed)
    sr = 22050  # or your actual sample rate

    return (sr, audio)  # Gradio expects (sample_rate, np_array)


# ---------------------------------------------------------------------
# Build Gradio App
# ---------------------------------------------------------------------
def create_gradio_app():
    model_list = get_models()
    voice_list = get_voices()

    css = """
    h4 {
        text-align: center;
        display:block;
    }
    h2 {
        text-align: center;
        display:block;
    }
    """
    with gr.Blocks(theme=gr.themes.Ocean(), css=css) as demo:
        gr.Markdown("## Kokoro TTS Demo: Choose engine, model, and voice")

        # Row 1: Text input
        text_input = gr.Textbox(
            label="Input Text",
            value="Hello, world! Testing both eSpeak and OpenPhonemizer. Can you believe that we live in 2024 and have access to advanced AI?",
            lines=3,
        )

        # Row 2: Engine selection
        engine_dropdown = gr.Dropdown(
            choices=["espeak", "openphonemizer"],
            value="openphonemizer",
            label="Phonemizer",
        )

        # Row 3: Model dropdown
        model_dropdown = gr.Dropdown(
            choices=model_list,
            value=model_list[0] if model_list else None,
            label="Model (.pth)",
        )

        # Row 4: Voice dropdown
        voice_dropdown = gr.Dropdown(
            choices=voice_list,
            value=voice_list[0] if voice_list else None,
            label="Voice (.pt)",
        )

        # Row 5: Speed slider
        speed_slider = gr.Slider(
            minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Speech Speed"
        )

        # Generate button + audio output
        generate_btn = gr.Button("Generate")
        tts_output = gr.Audio(label="TTS Output")

        # Connect the button to our inference function
        generate_btn.click(
            fn=tts_inference,
            inputs=[
                text_input,
                engine_dropdown,
                model_dropdown,
                voice_dropdown,
                speed_slider,
            ],
            outputs=tts_output,
        )

        gr.Markdown(
            "#### Kokoro TTS Demo based on [Kokoro-82M](https://huggingface.co/hexgrad/Kokoro-82M)"
        )
    return demo


# ---------------------------------------------------------------------
# Main
# ---------------------------------------------------------------------
if __name__ == "__main__":
    app = create_gradio_app()
    app.launch()