Spaces:
Running
Running
File size: 6,517 Bytes
2eaa44a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import phonemizer
import re
import torch
from espeak_util import set_espeak_library
set_espeak_library()
def split_num(num):
num = num.group()
if "." in num:
return num
elif ":" in num:
h, m = [int(n) for n in num.split(":")]
if m == 0:
return f"{h} o'clock"
elif m < 10:
return f"{h} oh {m}"
return f"{h} {m}"
year = int(num[:4])
if year < 1100 or year % 1000 < 10:
return num
left, right = num[:2], int(num[2:4])
s = "s" if num.endswith("s") else ""
if 100 <= year % 1000 <= 999:
if right == 0:
return f"{left} hundred{s}"
elif right < 10:
return f"{left} oh {right}{s}"
return f"{left} {right}{s}"
def flip_money(m):
m = m.group()
bill = "dollar" if m[0] == "$" else "pound"
if m[-1].isalpha():
return f"{m[1:]} {bill}s"
elif "." not in m:
s = "" if m[1:] == "1" else "s"
return f"{m[1:]} {bill}{s}"
b, c = m[1:].split(".")
s = "" if b == "1" else "s"
c = int(c.ljust(2, "0"))
coins = (
f"cent{'' if c == 1 else 's'}"
if m[0] == "$"
else ("penny" if c == 1 else "pence")
)
return f"{b} {bill}{s} and {c} {coins}"
def point_num(num):
a, b = num.group().split(".")
return " point ".join([a, " ".join(b)])
def normalize_text(text):
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
text = text.replace("«", chr(8220)).replace("»", chr(8221))
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
text = text.replace("(", "«").replace(")", "»")
for a, b in zip("、。!,:;?", ",.!,:;?"):
text = text.replace(a, b + " ")
text = re.sub(r"[^\S \n]", " ", text)
text = re.sub(r" +", " ", text)
text = re.sub(r"(?<=\n) +(?=\n)", "", text)
text = re.sub(r"\bD[Rr]\.(?= [A-Z])", "Doctor", text)
text = re.sub(r"\b(?:Mr\.|MR\.(?= [A-Z]))", "Mister", text)
text = re.sub(r"\b(?:Ms\.|MS\.(?= [A-Z]))", "Miss", text)
text = re.sub(r"\b(?:Mrs\.|MRS\.(?= [A-Z]))", "Mrs", text)
text = re.sub(r"\betc\.(?! [A-Z])", "etc", text)
text = re.sub(r"(?i)\b(y)eah?\b", r"\1e'a", text)
text = re.sub(
r"\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)", split_num, text
)
text = re.sub(r"(?<=\d),(?=\d)", "", text)
text = re.sub(
r"(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b",
flip_money,
text,
)
text = re.sub(r"\d*\.\d+", point_num, text)
text = re.sub(r"(?<=\d)-(?=\d)", " to ", text)
text = re.sub(r"(?<=\d)S", " S", text)
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
text = re.sub(r"(?<=X')S\b", "s", text)
text = re.sub(
r"(?:[A-Za-z]\.){2,} [a-z]", lambda m: m.group().replace(".", "-"), text
)
text = re.sub(r"(?i)(?<=[A-Z])\.(?=[A-Z])", "-", text)
return text.strip()
def get_vocab():
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
return dicts
VOCAB = get_vocab()
def tokenize(ps):
return [i for i in map(VOCAB.get, ps) if i is not None]
phonemizers = dict(
a=phonemizer.backend.EspeakBackend(
language="en-us", preserve_punctuation=True, with_stress=True
),
b=phonemizer.backend.EspeakBackend(
language="en-gb", preserve_punctuation=True, with_stress=True
),
)
def phonemize(text, lang, norm=True):
if norm:
text = normalize_text(text)
ps = phonemizers[lang].phonemize([text])
ps = ps[0] if ps else ""
# https://en.wiktionary.org/wiki/kokoro#English
ps = ps.replace("kəkˈoːɹoʊ", "kˈoʊkəɹoʊ").replace("kəkˈɔːɹəʊ", "kˈəʊkəɹəʊ")
ps = ps.replace("ʲ", "j").replace("r", "ɹ").replace("x", "k").replace("ɬ", "l")
ps = re.sub(r"(?<=[a-zɹː])(?=hˈʌndɹɪd)", " ", ps)
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', "z", ps)
if lang == "a":
ps = re.sub(r"(?<=nˈaɪn)ti(?!ː)", "di", ps)
ps = "".join(filter(lambda p: p in VOCAB, ps))
return ps.strip()
def length_to_mask(lengths):
mask = (
torch.arange(lengths.max())
.unsqueeze(0)
.expand(lengths.shape[0], -1)
.type_as(lengths)
)
mask = torch.gt(mask + 1, lengths.unsqueeze(1))
return mask
@torch.no_grad()
def forward(model, tokens, ref_s, speed):
device = ref_s.device
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
s = ref_s[:, 128:]
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1) / speed
pred_dur = torch.round(duration).clamp(min=1).long()
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame : c_frame + pred_dur[0, i].item()] = 1
c_frame += pred_dur[0, i].item()
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
def generate(model, text, voicepack, lang="a", speed=1):
ps = phonemize(text, lang)
tokens = tokenize(ps)
if not tokens:
return None
elif len(tokens) > 510:
tokens = tokens[:510]
print("Truncated to 510 tokens")
ref_s = voicepack[len(tokens)]
out = forward(model, tokens, ref_s, speed)
ps = "".join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
return out, ps
|