Kokoro_TTS_Compare / tts_cli_op.py
Wismut's picture
initial commit
2eaa44a
#!/usr/bin/env python3
# tts_cli_op.py
"""
Example CLI for generating audio with Kokoro-StyleTTS2.
Usage:
python tts_cli.py \
--model /path/to/kokoro-v0_19.pth \
--config /path/to/config.json \
--text "Hello, my stinking friends from 1906! You stink." \
--voicepack /path/to/af.pt \
--output output.wav
Make sure:
1. `models.py` is in the same folder (with `build_model`, `Decoder`, etc.).
2. You have installed the needed libraries:
pip install torch phonemizer munch soundfile pyyaml
3. The model is a checkpoint that your `build_model` can load.
Adapt as needed!
"""
import argparse
import os
import re
import torch
import soundfile as sf
import numpy as np
from openphonemizer import OpenPhonemizer
from typing import List
import joblib
# --------------------------------------------------------------------
# Import from your local `models.py` (requires that file to be present).
# This example assumes `build_model` loads the entire TTS submodules
# (bert, bert_encoder, predictor, decoder, text_encoder).
# --------------------------------------------------------------------
from models import build_model
def resplit_strings(arr):
"""
Given a list of string tokens (e.g. words, phrases), tries to
split them into two sub-lists whose total lengths are as balanced
as possible. The goal is to chunk a large string in half without
splitting in the middle of a word.
"""
if not arr:
return "", ""
if len(arr) == 1:
return arr[0], ""
min_diff = float("inf")
best_split = 0
lengths = [len(s) for s in arr]
spaces = len(arr) - 1
left_len = 0
right_len = sum(lengths) + spaces
for i in range(1, len(arr)):
# Add current word + space to left side
left_len += lengths[i - 1] + (1 if i > 1 else 0)
# Remove from right side
right_len -= lengths[i - 1] + 1
diff = abs(left_len - right_len)
if diff < min_diff:
min_diff = diff
best_split = i
return " ".join(arr[:best_split]), " ".join(arr[best_split:])
def recursive_split(text, lang="a"):
"""
Splits a piece of text into smaller segments so that
each segment's phoneme length < some ~limit (~500 tokens).
"""
# We'll reuse your existing `phonemize_text` + `tokenize` from script 1
# to see if it is < 512 tokens. If it is, return it as a single chunk.
# Otherwise, split on punctuation or whitespace and recurse.
# 1. Phonemize first, check length
ps = phonemize_text(text, do_normalize=True)
tokens = tokenize(ps)
if len(tokens) < 512:
return [(text, ps)]
# If too large, we split on certain punctuation or fallback to whitespace
# We'll look for punctuation that often indicates sentence boundaries
# If none found, fallback to space-split
for punctuation in [r"[.?!…]", r"[:,;—]"]:
pattern = f"(?:(?<={punctuation})|(?<={punctuation}[\"'»])) "
# Attempt to split on that punctuation
splits = re.split(pattern, text)
if len(splits) > 1:
break
else:
# If we didn't break out, just do whitespace split
splits = text.split(" ")
# Use resplit_strings to chunk it about halfway
left, right = resplit_strings(splits)
# Recurse
return recursive_split(left) + recursive_split(right)
def segment_and_tokenize(long_text, lang="a"):
"""
Takes a large text, optionally normalizes or cleans it,
then breaks it into a list of (segment_text, segment_phonemes).
"""
# Additional cleaning if you want:
# long_text = normalize_text(long_text) # your existing function
# We chunk it up using recursive_split
segments = recursive_split(long_text)
return segments
# -------------- Normalization & Phonemization Routines -------------- #
def parens_to_angles(s):
return s.replace("(", "«").replace(")", "»")
def split_num(num):
num = num.group()
if "." in num:
return num
elif ":" in num:
h, m = [int(n) for n in num.split(":")]
if m == 0:
return f"{h} o'clock"
elif m < 10:
return f"{h} oh {m}"
return f"{h} {m}"
year = int(num[:4])
if year < 1100 or year % 1000 < 10:
return num
left, right = num[:2], int(num[2:4])
s = "s" if num.endswith("s") else ""
if 100 <= year % 1000 <= 999:
if right == 0:
return f"{left} hundred{s}"
elif right < 10:
return f"{left} oh {right}{s}"
return f"{left} {right}{s}"
def flip_money(m):
m = m.group()
bill = "dollar" if m[0] == "$" else "pound"
if m[-1].isalpha():
return f"{m[1:]} {bill}s"
elif "." not in m:
s = "" if m[1:] == "1" else "s"
return f"{m[1:]} {bill}{s}"
b, c = m[1:].split(".")
s = "" if b == "1" else "s"
c = int(c.ljust(2, "0"))
coins = (
f"cent{'' if c == 1 else 's'}"
if m[0] == "$"
else ("penny" if c == 1 else "pence")
)
return f"{b} {bill}{s} and {c} {coins}"
def point_num(num):
a, b = num.group().split(".")
return " point ".join([a, " ".join(b)])
def normalize_text(text):
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
text = text.replace("«", chr(8220)).replace("»", chr(8221))
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
text = parens_to_angles(text)
# Replace some common full-width punctuation in CJK:
for a, b in zip("、。!,:;?", ",.!,:;?"):
text = text.replace(a, b + " ")
text = re.sub(r"[^\S \n]", " ", text)
text = re.sub(r" +", " ", text)
text = re.sub(r"(?<=\n) +(?=\n)", "", text)
text = re.sub(r"\bD[Rr]\.(?= [A-Z])", "Doctor", text)
text = re.sub(r"\b(?:Mr\.|MR\.(?= [A-Z]))", "Mister", text)
text = re.sub(r"\b(?:Ms\.|MS\.(?= [A-Z]))", "Miss", text)
text = re.sub(r"\b(?:Mrs\.|MRS\.(?= [A-Z]))", "Mrs", text)
text = re.sub(r"\betc\.(?! [A-Z])", "etc", text)
text = re.sub(r"(?i)\b(y)eah?\b", r"\1e'a", text)
text = re.sub(
r"\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)",
split_num,
text,
)
text = re.sub(r"(?<=\d),(?=\d)", "", text)
text = re.sub(
r"(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b",
flip_money,
text,
)
text = re.sub(r"\d*\.\d+", point_num, text)
text = re.sub(r"(?<=\d)-(?=\d)", " to ", text) # Could be minus; adjust if needed
text = re.sub(r"(?<=\d)S", " S", text)
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
text = re.sub(r"(?<=X')S\b", "s", text)
text = re.sub(
r"(?:[A-Za-z]\.){2,} [a-z]", lambda m: m.group().replace(".", "-"), text
)
text = re.sub(r"(?i)(?<=[A-Z])\.(?=[A-Z])", "-", text)
return text.strip()
# -------------------------------------------------------------------
# Vocab and Symbol Mapping
# -------------------------------------------------------------------
def get_vocab():
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i, s in enumerate(symbols):
dicts[s] = i
return dicts
VOCAB = get_vocab()
def tokenize(ps: str):
"""Convert the phoneme string into integer tokens based on VOCAB."""
return [VOCAB.get(p) for p in ps if p in VOCAB]
# -------------------------------------------------------------------
# Initialize a simple phonemizer
# For English:
# 'a' ~ en-us
# 'b' ~ en-gb
# -------------------------------------------------------------------
# Wrapper around OpenPhonemizer to enable batch phonemization
open_phonemizer = OpenPhonemizer()
class Phonemizer:
def __init__(self, open_phonemizer):
"""
open_phonemizer: an instance of OpenPhonemizer()
"""
self.open_phonemizer = open_phonemizer
def phonemize(
self,
text: List[str],
njobs: int = 4,
strip: bool = False,
) -> List[str]:
"""
Phonemizes a list of input strings using OpenPhonemizer (which
itself only supports single-string input).
Parameters
----------
text : list of str
Each element is an utterance (or line) to be phonemized.
njobs : int
The number of parallel jobs for phonemization.
strip : bool
Not used by OpenPhonemizer directly, but you can implement
an additional final “strip” step if needed.
Returns
-------
list of str
The phonemized text strings, in the same order as input.
"""
if not isinstance(text, list) or any(not isinstance(x, str) for x in text):
raise ValueError("`text` must be a list of strings.")
# Optionally do any pre-processing you want here ...
# e.g. text = [self._some_preprocess(line) for line in text]
# If we only have one job, do it in a single loop
if njobs == 1:
return [self._phonemize_single(utterance, strip) for utterance in text]
# Otherwise, we can split `text` into chunks and process in parallel
# The easiest approach is to chunk the entire list into smaller sublists
# and phonemize each chunk. Then flatten them.
# For large corpora, you might want a more sophisticated approach.
chunked_results = joblib.Parallel(n_jobs=njobs)(
joblib.delayed(self._phonemize_single)(t, strip) for t in text
)
return chunked_results
def _phonemize_single(self, line: str, strip: bool) -> str:
"""
Phonemize a single line using openphonemizer.
"""
# OpenPhonemizer usage:
# out_str = self.open_phonemizer(line)
# (That returns the phonemes as a string.)
phonemes = self.open_phonemizer(line)
# Implement a post-strip if you want to mimic removing trailing delimiters
# (this is just a placeholder for demonstration).
if strip:
phonemes = phonemes.rstrip()
return phonemes
# initiate the wrapper:
phonemizer_wrapper = Phonemizer(open_phonemizer)
def phonemize_text(text, lang="a", do_normalize=True):
if do_normalize:
text = normalize_text(text)
ps_list = phonemizer_wrapper.phonemize([text])
ps = ps_list[0] if ps_list else ""
# Some custom replacements
ps = ps.replace("kəkˈoːɹoʊ", "kˈoʊkəɹoʊ").replace("kəkˈɔːɹəʊ", "kˈəʊkəɹəʊ")
ps = ps.replace("ʲ", "j").replace("r", "ɹ").replace("x", "k").replace("ɬ", "l")
# Example: insert space before "hˈʌndɹɪd" if there's a letter, e.g. "nˈaɪn" => "nˈaɪn hˈʌndɹɪd"
ps = re.sub(r"(?<=[a-zɹː])(?=hˈʌndɹɪd)", " ", ps)
# "z" at the end of a word -> remove space (just your snippet)
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', "z", ps)
# Handle "ninety" => "ninedi"? Just from your snippet:
# If lang is 'a', handle "ninety" => "ninedi"? Just from your snippet:
if lang == "a":
ps = re.sub(r"(?<=nˈaɪn)ti(?!ː)", "di", ps)
# Only keep valid symbols
ps = "".join(p for p in ps if p in VOCAB)
return ps.strip()
# -------------------------------------------------------------------
# Utility for generating text masks
# -------------------------------------------------------------------
def length_to_mask(lengths):
# lengths is a Tensor of shape [B], containing the text length for each batch
max_len = lengths.max()
row_ids = torch.arange(max_len, device=lengths.device).unsqueeze(0)
mask = row_ids.expand(lengths.shape[0], -1)
return (mask + 1) > lengths.unsqueeze(1)
# -------------------------------------------------------------------
# The forward pass for inference (from your snippet).
# This version references `model.predictor`, `model.decoder`, etc.
# -------------------------------------------------------------------
@torch.no_grad()
def forward_tts(model, tokens, ref_s, speed=1.0):
"""
model: Munch with submodels: bert, bert_encoder, predictor, decoder, text_encoder
tokens: list[int], the tokenized input (without [0, ... , 0] yet)
ref_s: reference embedding (torch.Tensor)
speed: float, speed factor
"""
device = ref_s.device
tokens_t = torch.LongTensor([[0, *tokens, 0]]).to(device) # add boundary tokens
input_lengths = torch.LongTensor([tokens_t.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
# 1. Encode with BERT
bert_dur = model.bert(tokens_t, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
# 2. Prosody predictor
s = ref_s[
:, 128:
] # from your snippet: the last 128 is ???, or the first 128 is ???
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1) / speed
pred_dur = torch.round(duration).clamp(min=1).long()
# 3. Expand alignment
total_len = pred_dur.sum().item()
pred_aln_trg = torch.zeros(input_lengths, total_len, device=device)
c_frame = 0
for i in range(pred_aln_trg.size(0)):
n = pred_dur[0, i].item()
pred_aln_trg[i, c_frame : c_frame + n] = 1
c_frame += n
# 4. Run F0 + Noise predictor
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0)
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
# 5. Text encoder -> asr
t_en = model.text_encoder(tokens_t, input_lengths, text_mask)
asr = t_en @ pred_aln_trg.unsqueeze(0)
# 6. Decode audio
audio = model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]) # B x audio_len
return audio.squeeze().cpu().numpy()
def generate_tts(model, text, voicepack, lang="a", speed=1.0):
"""
model: the Munch returned by build_model(...)
text: the input text (string)
voicepack: the torch Tensor reference embedding, or a dict of them
speed: speech speed factor
sample_rate: sampling rate for the output
"""
# 1. Phonemize
ps = phonemize_text(text, do_normalize=True)
tokens = tokenize(ps)
if not tokens:
return None, ps
# 2. Retrieve reference style
# If your voicepack is a single embedding for all lengths, adapt as needed.
# If your voicepack is something like `voicepack[len(tokens)]`, do that.
# If you have multiple voices, you might do something else.
try:
ref_s = voicepack[len(tokens)]
except:
# fallback if len(tokens) is out of range
ref_s = voicepack[-1]
ref_s = ref_s.to("cpu" if not next(model.bert.parameters()).is_cuda else "cuda")
# 3. Generate
audio = forward_tts(model, tokens, ref_s, speed=speed)
return audio, ps
def generate_long_form_tts(model, full_text, voicepack, lang="a", speed=1.0):
"""
Generate TTS for a large `full_text`, splitting it into smaller segments
and concatenating the resulting audio.
Returns: (np.float32 array) final_audio, list_of_segment_phonemes
"""
# 1. Segment the text
segments = segment_and_tokenize(full_text)
# segments is a list of (seg_text, seg_phonemes)
# 2. For each segment, call `generate_tts(...)`
audio_chunks = []
all_phonemes = []
for i, (seg_text, seg_ps) in enumerate(segments, 1):
print(f"[LongForm] Generating chunk {i}/{len(segments)}: {seg_text[:40]}...")
audio, used_phonemes = generate_tts(model, seg_text, voicepack, speed=speed)
if audio is not None:
audio_chunks.append(audio)
all_phonemes.append(used_phonemes)
else:
print(f"[LongForm] Skipped empty segment {i}...")
if not audio_chunks:
return None, []
# 3. Concatenate the audio
final_audio = np.concatenate(audio_chunks, axis=0)
return final_audio, all_phonemes
# -------------------------------------------------------------------
# Main CLI
# -------------------------------------------------------------------
def main():
parser = argparse.ArgumentParser(description="Kokoro-StyleTTS2 CLI Example")
parser.add_argument(
"--model",
type=str,
default="pretrained_models/Kokoro/kokoro-v0_19.pth",
help="Path to your model checkpoint (e.g. kokoro-v0_19.pth).",
)
parser.add_argument(
"--config",
type=str,
default="pretrained_models/Kokoro/config.json",
help="Path to config.json (used by build_model).",
)
parser.add_argument(
"--text",
type=str,
default="Hello world! This is Kokoro, a new text-to-speech model based on StyleTTS2 from 2024!",
help="Text to be converted into speech.",
)
parser.add_argument(
"--voicepack",
type=str,
default="pretrained_models/Kokoro/voices/af.pt",
help="Path to a .pt file for your reference embedding(s).",
)
parser.add_argument(
"--output", type=str, default="output.wav", help="Output WAV filename."
)
parser.add_argument(
"--speed",
type=float,
default=1.2,
help="Speech speed factor, e.g. 0.8 slower, 1.2 faster, etc.",
)
parser.add_argument(
"--device",
type=str,
default="cpu",
choices=["cpu", "cuda"],
help="Device to run inference on.",
)
args = parser.parse_args()
# 1. Build model using your local build_model function
# (which loads TextEncoder, Decoder, etc. and returns a Munch).
if not os.path.isfile(args.config):
raise FileNotFoundError(f"config.json not found: {args.config}")
# Optionally load config as Munch (depends on your build_model usage)
# But your snippet does something like:
# with open(config, 'r') as r: ...
# ...
# model = build_model(path, device)
# We'll do the same but in a simpler form:
device = (
args.device if (args.device == "cuda" and torch.cuda.is_available()) else "cpu"
)
print(f"Loading model from: {args.model}")
model = build_model(
args.model, device
) # This requires that `args.model` is the checkpoint path
# Because `build_model` returns a Munch (dict of submodules),
# we can't just do `model.eval()`, we must set each submodule to eval:
for k, subm in model.items():
if isinstance(subm, torch.nn.Module):
subm.eval()
# 2. Load voicepack
if not os.path.isfile(args.voicepack):
raise FileNotFoundError(f"Voicepack file not found: {args.voicepack}")
print(f"Loading voicepack from: {args.voicepack}")
vp = torch.load(args.voicepack, map_location=device)
# If your voicepack is an nn.Module, set it to eval as well
if isinstance(vp, torch.nn.Module):
vp.eval()
# 3. Generate audio
print(f"Generating speech for text: {args.text}")
audio, phonemes = generate_long_form_tts(
model, args.text, vp, lang="a", speed=args.speed
)
if audio is None:
print("No tokens were generated (maybe empty text?). Exiting.")
return
# 4. Write WAV
print(f"Writing output to: {args.output}")
sf.write(args.output, audio, 22050)
print("Finished!")
print(f"Phonemes used: {phonemes}")
if __name__ == "__main__":
main()