import requests import json import pandas as pd from tqdm.auto import tqdm import streamlit as st from huggingface_hub import HfApi, hf_hub_download from huggingface_hub.repocard import metadata_load aliases_lang = {"sv": "sv-SE"} cer_langs = ["ja", "zh-CN", "zh-HK", "zh-TW"] with open("languages.json") as f: lang2name = json.load(f) suggested_datasets = [ "librispeech_asr", "mozilla-foundation/common_voice_8_0", "mozilla-foundation/common_voice_7_0", "speech-recognition-community-v2/eval_data", ] def make_clickable(model_name): link = "https://huggingface.co/" + model_name return f'{model_name}' def get_model_ids(): api = HfApi() models = api.list_models(filter="hf-asr-leaderboard") model_ids = [x.modelId for x in models] return model_ids def get_metadata(model_id): try: readme_path = hf_hub_download(model_id, filename="README.md") return metadata_load(readme_path) except requests.exceptions.HTTPError: # 404 README.md not found return None def parse_metric_value(value): if isinstance(value, str): "".join(value.split("%")) try: value = float(value) except: # noqa: E722 value = None elif isinstance(value, float) and value < 1.1: # assuming that WER is given in 0.xx format value = 100 * value elif isinstance(value, list): if len(value) > 0: value = value[0] else: value = None value = round(value, 2) if value is not None else None return value def parse_metrics_rows(meta): if "model-index" not in meta or "language" not in meta: return None lang = meta["language"] lang = lang[0] if isinstance(lang, list) else lang lang = aliases_lang[lang] if lang in aliases_lang else lang for result in meta["model-index"][0]["results"]: if "dataset" not in result or "metrics" not in result: continue dataset = result["dataset"]["type"] if "args" not in result["dataset"]: continue dataset_config = result["dataset"]["args"] row = {"dataset": dataset, "lang": lang} for metric in result["metrics"]: type = metric["type"].lower().strip() if type not in ["wer", "cer"]: continue value = parse_metric_value(metric["value"]) if value is None: continue if type not in row or value < row[type]: # overwrite the metric if the new value is lower (e.g. with LM) row[type] = value if "wer" in row or "cer" in row: yield row @st.cache(ttl=600) def get_data(): data = [] model_ids = get_model_ids() for model_id in tqdm(model_ids): meta = get_metadata(model_id) if meta is None: continue for row in parse_metrics_rows(meta): if row is None: continue row["model_id"] = model_id data.append(row) return pd.DataFrame.from_records(data) def sort_datasets(datasets): # 1. sort by name datasets = sorted(datasets) # 2. bring the suggested datasets to the top and append the rest datasets = sorted( datasets, key=lambda dataset_id: suggested_datasets.index(dataset_id) if dataset_id in suggested_datasets else len(suggested_datasets), ) return datasets @st.cache(ttl=600) def generate_dataset_info(datasets): msg = f""" The models have been trained and/or evaluated on the following datasets: """ for dataset_id in datasets: if dataset_id in suggested_datasets: msg += f"* [{dataset_id}](https://hf.co/datasets/{dataset_id}) *(recommended)*\n" else: msg += f"* [{dataset_id}](https://hf.co/datasets/{dataset_id})\n" msg += """ Choose the dataset that is most relevant to your task and select it from the dropdown below. """ msg = "\n".join([line.strip() for line in msg.split("\n")]) return msg dataframe = get_data() dataframe = dataframe.fillna("") st.sidebar.image("logo.png", width=200) st.markdown("# The 🤗 Speech Bench") st.markdown( "This is a leaderboard over all speech recognition models and datasets.\n\n" "⬅ Please select the language you want to find a model for from the dropdown on the left." ) lang = st.sidebar.selectbox( "Language", sorted(dataframe["lang"].unique(), key=lambda key: lang2name.get(key, key)), format_func=lambda key: lang2name.get(key, key), index=0, ) lang_df = dataframe[dataframe.lang == lang] sorted_datasets = sort_datasets(lang_df["dataset"].unique()) text = generate_dataset_info(sorted_datasets) st.sidebar.markdown(text) lang_name = lang2name[lang] if lang in lang2name else "" num_models = len(lang_df["model_id"].unique()) num_datasets = len(lang_df["dataset"].unique()) text = f""" For the `{lang}` ({lang_name}) language, there are currently `{num_models}` model(s) trained on `{num_datasets}` dataset(s) available for `automatic-speech-recognition`. """ st.markdown(text) dataset = st.sidebar.selectbox( "Dataset", sorted_datasets, index=0, ) dataset_df = lang_df[lang_df.dataset == dataset] # sort by WER or CER depending on the language if lang in cer_langs: dataset_df = dataset_df[["model_id", "cer"]] dataset_df.sort_values("cer", inplace=True) else: dataset_df = dataset_df[["model_id", "wer"]] dataset_df.sort_values("wer", inplace=True) dataset_df.rename( columns={ "model_id": "Model", "wer": "WER (lower is better)", "cer": "CER (lower is better)", }, inplace=True, ) st.markdown( "Please click on the model's name to be redirected to its model card which includes documentation and examples on how to use it." ) # display the model ranks dataset_df = dataset_df.reset_index(drop=True) dataset_df.index += 1 # turn the model ids into clickable links dataset_df["Model"] = dataset_df["Model"].apply(make_clickable) table_html = dataset_df.to_html(escape=False) table_html = table_html.replace("