Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from timmm import create_model
|
5 |
+
from timm.data import resolve_data_config
|
6 |
+
from timm.data.transform import create_transform
|
7 |
+
|
8 |
+
IMAGENET_1k_URL = "https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt"
|
9 |
+
LABELS = requests.get(IMAGENET_1k_URL).text.strip().split('\n')
|
10 |
+
|
11 |
+
model = create_model('resnet50', pretrained=True)
|
12 |
+
|
13 |
+
transform = create_transform(
|
14 |
+
**resolve_data_config({}, model=model)
|
15 |
+
)
|
16 |
+
model.eval()
|
17 |
+
|
18 |
+
def predict_fn(img):
|
19 |
+
img = img.convert('RGB')
|
20 |
+
img = transform(img).unsqueeze(0)
|
21 |
+
|
22 |
+
with torch.no_grad():
|
23 |
+
out = model(img)
|
24 |
+
|
25 |
+
probabilites = torch.nn.functional.softmax(out[0], dim=0)
|
26 |
+
|
27 |
+
values, indices = torch.topk(probabilites, k=5)
|
28 |
+
|
29 |
+
return {LABELS[i]: v.item() for i, v in zip(indices, values)}
|
30 |
+
|
31 |
+
gr.Interface(predict_fn, gr.inputs.Image(type='pil'), outputs='label').launch()
|