Spaces:
Paused
Paused
File size: 17,637 Bytes
60b53a6 33f0de1 6696db2 33f0de1 60b53a6 3c28324 f18c3eb 20095d9 9787d82 33f0de1 ea35578 2759f98 b14462b 20095d9 b14462b 20095d9 b14462b 2deee43 cd6f17c 9386df0 20095d9 9386df0 cd6f17c 575de15 20095d9 9386df0 20095d9 cd6f17c 33f0de1 20095d9 60b53a6 20095d9 b14462b 20095d9 b14462b 20095d9 bdd35f2 20095d9 bdd35f2 20095d9 6cca076 65194e4 20095d9 65194e4 20095d9 65194e4 20095d9 65194e4 20095d9 65194e4 20095d9 65194e4 20095d9 65194e4 20095d9 65194e4 20095d9 65194e4 20095d9 65194e4 20095d9 65194e4 20095d9 65194e4 20095d9 65194e4 20095d9 65194e4 20095d9 65194e4 20095d9 65194e4 20095d9 b14462b 19de71a 20095d9 33f0de1 cd6f17c 33f0de1 20095d9 b14462b 20095d9 b14462b 60b53a6 0c7cad3 20095d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
import os
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import asyncio
import gc
# Authentification
login(token=os.environ["HF_TOKEN"])
# Restructuration des modèles et de leurs informations
models_info = {
"Meta-llama": {
"Llama 2": {
"7B": {"name": "meta-llama/Llama-2-7b-hf", "languages": ["en"]},
"13B": {"name": "meta-llama/Llama-2-13b-hf", "languages": ["en"]},
},
"Llama 3": {
"8B": {"name": "meta-llama/Llama-3-8B", "languages": ["en"]},
"3.2-3B": {"name": "meta-llama/Llama-3.2-3B", "languages": ["en", "de", "fr", "it", "pt", "hi", "es", "th"]},
},
},
"Mistral AI": {
"Mistral": {
"7B-v0.1": {"name": "mistralai/Mistral-7B-v0.1", "languages": ["en"]},
"7B-v0.3": {"name": "mistralai/Mistral-7B-v0.3", "languages": ["en"]},
},
"Mixtral": {
"8x7B-v0.1": {"name": "mistralai/Mixtral-8x7B-v0.1", "languages": ["en", "fr", "it", "de", "es"]},
},
},
"Google": {
"Gemma": {
"2B": {"name": "google/gemma-2-2b", "languages": ["en"]},
"7B": {"name": "google/gemma-2-7b", "languages": ["en"]},
},
},
"CroissantLLM": {
"CroissantLLMBase": {
"Base": {"name": "croissantllm/CroissantLLMBase", "languages": ["en", "fr"]},
},
},
}
# Paramètres recommandés pour chaque modèle
model_parameters = {
"meta-llama/Llama-2-7b-hf": {"temperature": 0.8, "top_p": 0.9, "top_k": 40},
"meta-llama/Llama-2-13b-hf": {"temperature": 0.8, "top_p": 0.9, "top_k": 40},
"meta-llama/Llama-3-8B": {"temperature": 0.75, "top_p": 0.9, "top_k": 50},
"meta-llama/Llama-3.2-3B": {"temperature": 0.75, "top_p": 0.9, "top_k": 50},
"mistralai/Mistral-7B-v0.1": {"temperature": 0.7, "top_p": 0.9, "top_k": 50},
"mistralai/Mistral-7B-v0.3": {"temperature": 0.7, "top_p": 0.9, "top_k": 50},
"mistralai/Mixtral-8x7B-v0.1": {"temperature": 0.8, "top_p": 0.95, "top_k": 50},
"google/gemma-2-2b": {"temperature": 0.7, "top_p": 0.95, "top_k": 40},
"google/gemma-2-7b": {"temperature": 0.7, "top_p": 0.95, "top_k": 40},
"croissantllm/CroissantLLMBase": {"temperature": 0.8, "top_p": 0.92, "top_k": 50}
}
# Variables globales
model_cache = {}
# Fonctions utilitaires
def update_model_type(family):
return gr.Dropdown(choices=list(models_info[family].keys()), value=None, interactive=True)
def update_model_variation(family, model_type):
if family and model_type:
return gr.Dropdown(choices=list(models_info[family][model_type].keys()), value=None, interactive=True)
return gr.Dropdown(choices=[], value=None, interactive=False)
def update_selected_model(family, model_type, variation):
if family and model_type and variation:
model_name = models_info[family][model_type][variation]["name"]
return model_name, gr.Dropdown(choices=models_info[family][model_type][variation]["languages"], value=models_info[family][model_type][variation]["languages"][0], visible=True, interactive=True)
return "", gr.Dropdown(visible=False)
async def load_model_async(model_name, progress=gr.Progress()):
try:
if model_name not in model_cache:
progress(0.1, f"Chargement du tokenizer pour {model_name}...")
tokenizer = await asyncio.to_thread(AutoTokenizer.from_pretrained, model_name)
progress(0.4, f"Chargement du modèle {model_name}...")
model = await asyncio.to_thread(AutoModelForCausalLM.from_pretrained, model_name,
torch_dtype=torch.float16, device_map="auto", low_cpu_mem_usage=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model_cache[model_name] = (model, tokenizer)
progress(1.0, f"Modèle {model_name} chargé avec succès")
return f"Modèle {model_name} chargé avec succès"
except Exception as e:
return f"Erreur lors du chargement du modèle {model_name} : {str(e)}"
def set_language(lang):
return f"Langue sélectionnée : {lang}"
def ensure_token_display(token, tokenizer):
if token.isdigit() or (token.startswith('-') and token[1:].isdigit()):
return tokenizer.decode([int(token)])
return token
async def analyze_next_token(model_name, input_text, temperature, top_p, top_k, progress=gr.Progress()):
if model_name not in model_cache:
return "Veuillez d'abord charger le modèle", None, None
model, tokenizer = model_cache[model_name]
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
try:
progress(0.5, "Analyse en cours...")
with torch.no_grad():
outputs = model(**inputs)
last_token_logits = outputs.logits[0, -1, :]
probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
top_k = min(10, top_k)
top_probs, top_indices = torch.topk(probabilities, top_k)
top_words = [ensure_token_display(tokenizer.decode([idx.item()]), tokenizer) for idx in top_indices]
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
prob_text = "Prochains tokens les plus probables :\n\n"
for word, prob in prob_data.items():
prob_text += f"{word}: {prob:.2%}\n"
prob_plot = plot_probabilities(prob_data)
attention_plot = plot_attention(inputs["input_ids"][0].cpu(), last_token_logits.cpu(), tokenizer)
progress(1.0, "Analyse terminée")
return prob_text, attention_plot, prob_plot
except Exception as e:
return f"Erreur lors de l'analyse : {str(e)}", None, None
async def generate_text(model_name, input_text, temperature, top_p, top_k, progress=gr.Progress()):
if model_name not in model_cache:
return "Veuillez d'abord charger le modèle"
model, tokenizer = model_cache[model_name]
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
try:
progress(0.5, "Génération en cours...")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=50,
temperature=temperature,
top_p=top_p,
top_k=top_k
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
progress(1.0, "Génération terminée")
return generated_text
except Exception as e:
return f"Erreur lors de la génération : {str(e)}"
def plot_probabilities(prob_data):
try:
words = list(prob_data.keys())
probs = list(prob_data.values())
fig, ax = plt.subplots(figsize=(12, 6))
bars = ax.bar(range(len(words)), probs, color='lightgreen')
ax.set_title("Probabilités des tokens suivants les plus probables")
ax.set_xlabel("Tokens")
ax.set_ylabel("Probabilité")
ax.set_xticks(range(len(words)))
ax.set_xticklabels(words, rotation=45, ha='right')
for i, (bar, word) in enumerate(zip(bars, words)):
height = bar.get_height()
ax.text(i, height, f'{height:.2%}',
ha='center', va='bottom', rotation=0)
plt.tight_layout()
return fig
except Exception as e:
print(f"Erreur lors de la création du graphique : {str(e)}")
return None
def plot_attention(input_ids, last_token_logits, tokenizer):
try:
input_tokens = [ensure_token_display(tokenizer.decode([id]), tokenizer) for id in input_ids]
attention_scores = torch.nn.functional.softmax(last_token_logits, dim=-1)
top_k = min(len(input_tokens), 10)
top_attention_scores, _ = torch.topk(attention_scores, top_k)
fig, ax = plt.subplots(figsize=(14, 7))
sns.heatmap(top_attention_scores.unsqueeze(0).numpy(), annot=True, cmap="YlOrRd", cbar=True, ax=ax, fmt='.2%')
ax.set_xticklabels(input_tokens[-top_k:], rotation=45, ha="right", fontsize=10)
ax.set_yticklabels(["Attention"], rotation=0, fontsize=10)
ax.set_title("Scores d'attention pour les derniers tokens", fontsize=16)
cbar = ax.collections[0].colorbar
cbar.set_label("Score d'attention", fontsize=12)
cbar.ax.tick_params(labelsize=10)
plt.tight_layout()
return fig
except Exception as e:
print(f"Erreur lors de la création du graphique d'attention : {str(e)}")
return None
def reset():
global model_cache
for model in model_cache.values():
del model
model_cache.clear()
torch.cuda.empty_cache()
gc.collect()
return (
"", 1.0, 1.0, 50, None, None, None, None,
gr.Dropdown(choices=list(models_info.keys()), value=None, interactive=True),
gr.Dropdown(choices=[], value=None, interactive=False),
gr.Dropdown(choices=[], value=None, interactive=False),
"", gr.Dropdown(visible=False), ""
)
def reset_comparison():
return [gr.Dropdown(choices=[], value=None) for _ in range(4)] + ["", "", gr.Dropdown(choices=[], value=None), 1.0, 1.0, 50, "", "", None, None, None, None]
async def compare_models(model1, model2, input_text, temp, top_p, top_k, progress=gr.Progress()):
if model1 not in model_cache or model2 not in model_cache:
return "Veuillez d'abord charger les deux modèles", "", None, None, None, None
progress(0.1, "Analyse du premier modèle...")
results1 = await analyze_next_token(model1, input_text, temp, top_p, top_k)
progress(0.4, "Analyse du second modèle...")
results2 = await analyze_next_token(model2, input_text, temp, top_p, top_k)
progress(1.0, "Comparaison terminée")
return (
results1[0], results2[0], # Probabilités du prochain token
results1[2], results2[2], # Graphiques de probabilités
results1[1], results2[1] # Graphiques d'attention
)
with gr.Blocks() as demo:
gr.Markdown("# LLM&BIAS")
with gr.Tabs():
with gr.Tab("Analyse individuelle"):
with gr.Accordion("Sélection du modèle", open=True):
with gr.Row():
model_family = gr.Dropdown(choices=list(models_info.keys()), label="Famille de modèle", interactive=True)
model_type = gr.Dropdown(choices=[], label="Type de modèle", interactive=False)
model_variation = gr.Dropdown(choices=[], label="Variation du modèle", interactive=False)
selected_model = gr.Textbox(label="Modèle sélectionné", interactive=False)
load_button = gr.Button("Charger le modèle")
load_output = gr.Textbox(label="Statut du chargement")
language_dropdown = gr.Dropdown(label="Choisissez une langue", visible=False)
language_output = gr.Textbox(label="Langue sélectionnée")
with gr.Row():
temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température")
top_p = gr.Slider(0.1, 1.0, value=1.0, label="Top-p")
top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
input_text = gr.Textbox(label="Texte d'entrée", lines=3)
analyze_button = gr.Button("Analyser le prochain token")
next_token_probs = gr.Textbox(label="Probabilités du prochain token")
with gr.Row():
attention_plot = gr.Plot(label="Visualisation de l'attention")
prob_plot = gr.Plot(label="Probabilités des tokens suivants")
generate_button = gr.Button("Générer le texte")
generated_text = gr.Textbox(label="Texte généré")
reset_button = gr.Button("Réinitialiser")
with gr.Tab("Comparaison de modèles"):
with gr.Row():
model1_family = gr.Dropdown(choices=list(models_info.keys()), label="Famille du modèle 1", interactive=True)
model1_type = gr.Dropdown(choices=[], label="Type du modèle 1", interactive=False)
model1_variation = gr.Dropdown(choices=[], label="Variation du modèle 1", interactive=False)
with gr.Row():
model2_family = gr.Dropdown(choices=list(models_info.keys()), label="Famille du modèle 2", interactive=True)
model2_type = gr.Dropdown(choices=[], label="Type du modèle 2", interactive=False)
model2_variation = gr.Dropdown(choices=[], label="Variation du modèle 2", interactive=False)
model1_selected = gr.Textbox(label="Modèle 1 sélectionné", interactive=False)
model2_selected = gr.Textbox(label="Modèle 2 sélectionné", interactive=False)
load_models_button = gr.Button("Charger les modèles")
load_models_output = gr.Textbox(label="Statut du chargement des modèles")
comparison_language = gr.Dropdown(label="Langue pour la comparaison", choices=[], interactive=False)
with gr.Row():
comp_temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température")
comp_top_p = gr.Slider(0.1, 1.0, value=1.0, label="Top-p")
comp_top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
comp_input_text = gr.Textbox(label="Texte d'entrée pour la comparaison", lines=3)
compare_button = gr.Button("Comparer les modèles")
with gr.Row():
model1_output = gr.Textbox(label="Probabilités du Modèle 1", lines=10)
model2_output = gr.Textbox(label="Probabilités du Modèle 2", lines=10)
with gr.Row():
model1_prob_plot = gr.Plot(label="Probabilités des tokens (Modèle 1)")
model2_prob_plot = gr.Plot(label="Probabilités des tokens (Modèle 2)")
with gr.Row():
model1_attention_plot = gr.Plot(label="Attention (Modèle 1)")
model2_attention_plot = gr.Plot(label="Attention (Modèle 2)")
comp_reset_button = gr.Button("Réinitialiser la comparaison")
# Événements pour l'onglet d'analyse individuelle
model_family.change(update_model_type, inputs=[model_family], outputs=[model_type])
model_type.change(update_model_variation, inputs=[model_family, model_type], outputs=[model_variation])
model_variation.change(update_selected_model, inputs=[model_family, model_type, model_variation], outputs=[selected_model, language_dropdown])
load_button.click(load_model_async, inputs=[selected_model], outputs=[load_output])
language_dropdown.change(set_language, inputs=[language_dropdown], outputs=[language_output])
analyze_button.click(analyze_next_token, inputs=[selected_model, input_text, temperature, top_p, top_k], outputs=[next_token_probs, attention_plot, prob_plot])
generate_button.click(generate_text, inputs=[selected_model, input_text, temperature, top_p, top_k], outputs=[generated_text])
reset_button.click(reset, outputs=[input_text, temperature, top_p, top_k, next_token_probs, attention_plot, prob_plot, generated_text, model_family, model_type, model_variation, selected_model, language_dropdown, language_output])
# Événements pour l'onglet de comparaison
model1_family.change(update_model_type, inputs=[model1_family], outputs=[model1_type])
model1_type.change(update_model_variation, inputs=[model1_family, model1_type], outputs=[model1_variation])
model1_variation.change(update_selected_model, inputs=[model1_family, model1_type, model1_variation], outputs=[model1_selected, comparison_language])
model2_family.change(update_model_type, inputs=[model2_family], outputs=[model2_type])
model2_type.change(update_model_variation, inputs=[model2_family, model2_type], outputs=[model2_variation])
model2_variation.change(update_selected_model, inputs=[model2_family, model2_type, model2_variation], outputs=[model2_selected, comparison_language])
async def load_both_models(model1, model2):
result1 = await load_model_async(model1)
result2 = await load_model_async(model2)
return f"Modèle 1: {result1}\nModèle 2: {result2}"
load_models_button.click(load_both_models, inputs=[model1_selected, model2_selected], outputs=[load_models_output])
compare_button.click(
compare_models,
inputs=[model1_selected, model2_selected, comp_input_text, comp_temperature, comp_top_p, comp_top_k],
outputs=[model1_output, model2_output, model1_prob_plot, model2_prob_plot, model1_attention_plot, model2_attention_plot]
)
comp_reset_button.click(
reset_comparison,
outputs=[model1_type, model1_variation, model2_type, model2_variation, model1_selected, model2_selected, comparison_language,
comp_temperature, comp_top_p, comp_top_k, comp_input_text, model1_output, model2_output,
model1_prob_plot, model2_prob_plot, model1_attention_plot, model2_attention_plot]
)
if __name__ == "__main__":
demo.launch() |