File size: 17,637 Bytes
60b53a6
 
33f0de1
6696db2
33f0de1
60b53a6
3c28324
f18c3eb
20095d9
 
9787d82
33f0de1
ea35578
2759f98
b14462b
 
 
 
 
 
 
 
20095d9
b14462b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20095d9
b14462b
 
 
 
 
 
 
2deee43
 
cd6f17c
 
9386df0
20095d9
 
9386df0
cd6f17c
575de15
20095d9
9386df0
20095d9
cd6f17c
 
 
33f0de1
20095d9
60b53a6
20095d9
b14462b
 
 
 
20095d9
 
 
b14462b
 
 
 
 
 
 
20095d9
bdd35f2
20095d9
 
 
 
 
 
 
 
 
 
 
bdd35f2
20095d9
6cca076
65194e4
 
 
20095d9
65194e4
 
 
 
20095d9
 
 
65194e4
20095d9
65194e4
 
 
20095d9
65194e4
 
 
 
 
 
20095d9
65194e4
20095d9
65194e4
 
 
 
 
 
 
20095d9
65194e4
20095d9
65194e4
 
 
 
20095d9
 
 
65194e4
20095d9
65194e4
 
 
20095d9
65194e4
 
 
20095d9
65194e4
 
 
 
 
 
20095d9
65194e4
 
 
 
 
20095d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65194e4
20095d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65194e4
 
20095d9
 
 
 
 
 
b14462b
 
 
 
 
 
 
19de71a
20095d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33f0de1
cd6f17c
33f0de1
20095d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b14462b
20095d9
 
 
 
 
 
b14462b
60b53a6
0c7cad3
20095d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
import os
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import asyncio
import gc

# Authentification
login(token=os.environ["HF_TOKEN"])

# Restructuration des modèles et de leurs informations
models_info = {
    "Meta-llama": {
        "Llama 2": {
            "7B": {"name": "meta-llama/Llama-2-7b-hf", "languages": ["en"]},
            "13B": {"name": "meta-llama/Llama-2-13b-hf", "languages": ["en"]},
        },
        "Llama 3": {
            "8B": {"name": "meta-llama/Llama-3-8B", "languages": ["en"]},
            "3.2-3B": {"name": "meta-llama/Llama-3.2-3B", "languages": ["en", "de", "fr", "it", "pt", "hi", "es", "th"]},
        },
    },
    "Mistral AI": {
        "Mistral": {
            "7B-v0.1": {"name": "mistralai/Mistral-7B-v0.1", "languages": ["en"]},
            "7B-v0.3": {"name": "mistralai/Mistral-7B-v0.3", "languages": ["en"]},
        },
        "Mixtral": {
            "8x7B-v0.1": {"name": "mistralai/Mixtral-8x7B-v0.1", "languages": ["en", "fr", "it", "de", "es"]},
        },
    },
    "Google": {
        "Gemma": {
            "2B": {"name": "google/gemma-2-2b", "languages": ["en"]},
            "7B": {"name": "google/gemma-2-7b", "languages": ["en"]},
        },
    },
    "CroissantLLM": {
        "CroissantLLMBase": {
            "Base": {"name": "croissantllm/CroissantLLMBase", "languages": ["en", "fr"]},
        },
    },
}

# Paramètres recommandés pour chaque modèle
model_parameters = {
    "meta-llama/Llama-2-7b-hf": {"temperature": 0.8, "top_p": 0.9, "top_k": 40},
    "meta-llama/Llama-2-13b-hf": {"temperature": 0.8, "top_p": 0.9, "top_k": 40},
    "meta-llama/Llama-3-8B": {"temperature": 0.75, "top_p": 0.9, "top_k": 50},
    "meta-llama/Llama-3.2-3B": {"temperature": 0.75, "top_p": 0.9, "top_k": 50},
    "mistralai/Mistral-7B-v0.1": {"temperature": 0.7, "top_p": 0.9, "top_k": 50},
    "mistralai/Mistral-7B-v0.3": {"temperature": 0.7, "top_p": 0.9, "top_k": 50},
    "mistralai/Mixtral-8x7B-v0.1": {"temperature": 0.8, "top_p": 0.95, "top_k": 50},
    "google/gemma-2-2b": {"temperature": 0.7, "top_p": 0.95, "top_k": 40},
    "google/gemma-2-7b": {"temperature": 0.7, "top_p": 0.95, "top_k": 40},
    "croissantllm/CroissantLLMBase": {"temperature": 0.8, "top_p": 0.92, "top_k": 50}
}

# Variables globales
model_cache = {}

# Fonctions utilitaires
def update_model_type(family):
    return gr.Dropdown(choices=list(models_info[family].keys()), value=None, interactive=True)

def update_model_variation(family, model_type):
    if family and model_type:
        return gr.Dropdown(choices=list(models_info[family][model_type].keys()), value=None, interactive=True)
    return gr.Dropdown(choices=[], value=None, interactive=False)

def update_selected_model(family, model_type, variation):
    if family and model_type and variation:
        model_name = models_info[family][model_type][variation]["name"]
        return model_name, gr.Dropdown(choices=models_info[family][model_type][variation]["languages"], value=models_info[family][model_type][variation]["languages"][0], visible=True, interactive=True)
    return "", gr.Dropdown(visible=False)

async def load_model_async(model_name, progress=gr.Progress()):
    try:
        if model_name not in model_cache:
            progress(0.1, f"Chargement du tokenizer pour {model_name}...")
            tokenizer = await asyncio.to_thread(AutoTokenizer.from_pretrained, model_name)
            progress(0.4, f"Chargement du modèle {model_name}...")
            model = await asyncio.to_thread(AutoModelForCausalLM.from_pretrained, model_name,
                                            torch_dtype=torch.float16, device_map="auto", low_cpu_mem_usage=True)
            if tokenizer.pad_token is None:
                tokenizer.pad_token = tokenizer.eos_token
            model_cache[model_name] = (model, tokenizer)
            progress(1.0, f"Modèle {model_name} chargé avec succès")
        return f"Modèle {model_name} chargé avec succès"
    except Exception as e:
        return f"Erreur lors du chargement du modèle {model_name} : {str(e)}"

def set_language(lang):
    return f"Langue sélectionnée : {lang}"

def ensure_token_display(token, tokenizer):
    if token.isdigit() or (token.startswith('-') and token[1:].isdigit()):
        return tokenizer.decode([int(token)])
    return token

async def analyze_next_token(model_name, input_text, temperature, top_p, top_k, progress=gr.Progress()):
    if model_name not in model_cache:
        return "Veuillez d'abord charger le modèle", None, None
    
    model, tokenizer = model_cache[model_name]
    inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
    
    try:
        progress(0.5, "Analyse en cours...")
        with torch.no_grad():
            outputs = model(**inputs)
        
        last_token_logits = outputs.logits[0, -1, :]
        probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
        
        top_k = min(10, top_k)
        top_probs, top_indices = torch.topk(probabilities, top_k)
        top_words = [ensure_token_display(tokenizer.decode([idx.item()]), tokenizer) for idx in top_indices]
        prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
        
        prob_text = "Prochains tokens les plus probables :\n\n"
        for word, prob in prob_data.items():
            prob_text += f"{word}: {prob:.2%}\n"
        
        prob_plot = plot_probabilities(prob_data)
        attention_plot = plot_attention(inputs["input_ids"][0].cpu(), last_token_logits.cpu(), tokenizer)
        
        progress(1.0, "Analyse terminée")
        return prob_text, attention_plot, prob_plot
    except Exception as e:
        return f"Erreur lors de l'analyse : {str(e)}", None, None

async def generate_text(model_name, input_text, temperature, top_p, top_k, progress=gr.Progress()):
    if model_name not in model_cache:
        return "Veuillez d'abord charger le modèle"
    
    model, tokenizer = model_cache[model_name]
    inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
    
    try:
        progress(0.5, "Génération en cours...")
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=50,
                temperature=temperature,
                top_p=top_p,
                top_k=top_k
            )
        
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        progress(1.0, "Génération terminée")
        return generated_text
    except Exception as e:
        return f"Erreur lors de la génération : {str(e)}"

def plot_probabilities(prob_data):
    try:
        words = list(prob_data.keys())
        probs = list(prob_data.values())
        
        fig, ax = plt.subplots(figsize=(12, 6))
        bars = ax.bar(range(len(words)), probs, color='lightgreen')
        ax.set_title("Probabilités des tokens suivants les plus probables")
        ax.set_xlabel("Tokens")
        ax.set_ylabel("Probabilité")
        
        ax.set_xticks(range(len(words)))
        ax.set_xticklabels(words, rotation=45, ha='right')
        
        for i, (bar, word) in enumerate(zip(bars, words)):
            height = bar.get_height()
            ax.text(i, height, f'{height:.2%}',
                    ha='center', va='bottom', rotation=0)
        
        plt.tight_layout()
        return fig
    except Exception as e:
        print(f"Erreur lors de la création du graphique : {str(e)}")
        return None

def plot_attention(input_ids, last_token_logits, tokenizer):
    try:
        input_tokens = [ensure_token_display(tokenizer.decode([id]), tokenizer) for id in input_ids]
        attention_scores = torch.nn.functional.softmax(last_token_logits, dim=-1)
        top_k = min(len(input_tokens), 10)
        top_attention_scores, _ = torch.topk(attention_scores, top_k)
        
        fig, ax = plt.subplots(figsize=(14, 7))
        sns.heatmap(top_attention_scores.unsqueeze(0).numpy(), annot=True, cmap="YlOrRd", cbar=True, ax=ax, fmt='.2%')
        ax.set_xticklabels(input_tokens[-top_k:], rotation=45, ha="right", fontsize=10)
        ax.set_yticklabels(["Attention"], rotation=0, fontsize=10)
        ax.set_title("Scores d'attention pour les derniers tokens", fontsize=16)
        
        cbar = ax.collections[0].colorbar
        cbar.set_label("Score d'attention", fontsize=12)
        cbar.ax.tick_params(labelsize=10)
        
        plt.tight_layout()
        return fig
    except Exception as e:
        print(f"Erreur lors de la création du graphique d'attention : {str(e)}")
        return None

def reset():
    global model_cache
    for model in model_cache.values():
        del model
    model_cache.clear()
    torch.cuda.empty_cache()
    gc.collect()
    return (
        "", 1.0, 1.0, 50, None, None, None, None,
        gr.Dropdown(choices=list(models_info.keys()), value=None, interactive=True),
        gr.Dropdown(choices=[], value=None, interactive=False),
        gr.Dropdown(choices=[], value=None, interactive=False),
        "", gr.Dropdown(visible=False), ""
    )

def reset_comparison():
    return [gr.Dropdown(choices=[], value=None) for _ in range(4)] + ["", "", gr.Dropdown(choices=[], value=None), 1.0, 1.0, 50, "", "", None, None, None, None]

async def compare_models(model1, model2, input_text, temp, top_p, top_k, progress=gr.Progress()):
    if model1 not in model_cache or model2 not in model_cache:
        return "Veuillez d'abord charger les deux modèles", "", None, None, None, None

    progress(0.1, "Analyse du premier modèle...")
    results1 = await analyze_next_token(model1, input_text, temp, top_p, top_k)
    progress(0.4, "Analyse du second modèle...")
    results2 = await analyze_next_token(model2, input_text, temp, top_p, top_k)
    progress(1.0, "Comparaison terminée")
    return (
        results1[0], results2[0],  # Probabilités du prochain token
        results1[2], results2[2],  # Graphiques de probabilités
        results1[1], results2[1]   # Graphiques d'attention
    )

with gr.Blocks() as demo:
    gr.Markdown("# LLM&BIAS")
    
    with gr.Tabs():
        with gr.Tab("Analyse individuelle"):
            with gr.Accordion("Sélection du modèle", open=True):
                with gr.Row():
                    model_family = gr.Dropdown(choices=list(models_info.keys()), label="Famille de modèle", interactive=True)
                    model_type = gr.Dropdown(choices=[], label="Type de modèle", interactive=False)
                    model_variation = gr.Dropdown(choices=[], label="Variation du modèle", interactive=False)
                
                selected_model = gr.Textbox(label="Modèle sélectionné", interactive=False)
                load_button = gr.Button("Charger le modèle")
                load_output = gr.Textbox(label="Statut du chargement")
                language_dropdown = gr.Dropdown(label="Choisissez une langue", visible=False)
                language_output = gr.Textbox(label="Langue sélectionnée")
            
            with gr.Row():
                temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température")
                top_p = gr.Slider(0.1, 1.0, value=1.0, label="Top-p")
                top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
            
            input_text = gr.Textbox(label="Texte d'entrée", lines=3)
            analyze_button = gr.Button("Analyser le prochain token")
            
            next_token_probs = gr.Textbox(label="Probabilités du prochain token")
            
            with gr.Row():
                attention_plot = gr.Plot(label="Visualisation de l'attention")
                prob_plot = gr.Plot(label="Probabilités des tokens suivants")
            
            generate_button = gr.Button("Générer le texte")
            generated_text = gr.Textbox(label="Texte généré")
            
            reset_button = gr.Button("Réinitialiser")

        with gr.Tab("Comparaison de modèles"):
            with gr.Row():
                model1_family = gr.Dropdown(choices=list(models_info.keys()), label="Famille du modèle 1", interactive=True)
                model1_type = gr.Dropdown(choices=[], label="Type du modèle 1", interactive=False)
                model1_variation = gr.Dropdown(choices=[], label="Variation du modèle 1", interactive=False)
            
            with gr.Row():
                model2_family = gr.Dropdown(choices=list(models_info.keys()), label="Famille du modèle 2", interactive=True)
                model2_type = gr.Dropdown(choices=[], label="Type du modèle 2", interactive=False)
                model2_variation = gr.Dropdown(choices=[], label="Variation du modèle 2", interactive=False)
            
            model1_selected = gr.Textbox(label="Modèle 1 sélectionné", interactive=False)
            model2_selected = gr.Textbox(label="Modèle 2 sélectionné", interactive=False)
            
            load_models_button = gr.Button("Charger les modèles")
            load_models_output = gr.Textbox(label="Statut du chargement des modèles")
            
            comparison_language = gr.Dropdown(label="Langue pour la comparaison", choices=[], interactive=False)
            
            with gr.Row():
                comp_temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température")
                comp_top_p = gr.Slider(0.1, 1.0, value=1.0, label="Top-p")
                comp_top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
            
            comp_input_text = gr.Textbox(label="Texte d'entrée pour la comparaison", lines=3)
            compare_button = gr.Button("Comparer les modèles")
            
            with gr.Row():
                model1_output = gr.Textbox(label="Probabilités du Modèle 1", lines=10)
                model2_output = gr.Textbox(label="Probabilités du Modèle 2", lines=10)
            
            with gr.Row():
                model1_prob_plot = gr.Plot(label="Probabilités des tokens (Modèle 1)")
                model2_prob_plot = gr.Plot(label="Probabilités des tokens (Modèle 2)")
            
            with gr.Row():
                model1_attention_plot = gr.Plot(label="Attention (Modèle 1)")
                model2_attention_plot = gr.Plot(label="Attention (Modèle 2)")
            
            comp_reset_button = gr.Button("Réinitialiser la comparaison")

    # Événements pour l'onglet d'analyse individuelle
    model_family.change(update_model_type, inputs=[model_family], outputs=[model_type])
    model_type.change(update_model_variation, inputs=[model_family, model_type], outputs=[model_variation])
    model_variation.change(update_selected_model, inputs=[model_family, model_type, model_variation], outputs=[selected_model, language_dropdown])
    load_button.click(load_model_async, inputs=[selected_model], outputs=[load_output])
    language_dropdown.change(set_language, inputs=[language_dropdown], outputs=[language_output])
    analyze_button.click(analyze_next_token, inputs=[selected_model, input_text, temperature, top_p, top_k], outputs=[next_token_probs, attention_plot, prob_plot])
    generate_button.click(generate_text, inputs=[selected_model, input_text, temperature, top_p, top_k], outputs=[generated_text])
    reset_button.click(reset, outputs=[input_text, temperature, top_p, top_k, next_token_probs, attention_plot, prob_plot, generated_text, model_family, model_type, model_variation, selected_model, language_dropdown, language_output])

    # Événements pour l'onglet de comparaison
    model1_family.change(update_model_type, inputs=[model1_family], outputs=[model1_type])
    model1_type.change(update_model_variation, inputs=[model1_family, model1_type], outputs=[model1_variation])
    model1_variation.change(update_selected_model, inputs=[model1_family, model1_type, model1_variation], outputs=[model1_selected, comparison_language])

    model2_family.change(update_model_type, inputs=[model2_family], outputs=[model2_type])
    model2_type.change(update_model_variation, inputs=[model2_family, model2_type], outputs=[model2_variation])
    model2_variation.change(update_selected_model, inputs=[model2_family, model2_type, model2_variation], outputs=[model2_selected, comparison_language])

    async def load_both_models(model1, model2):
        result1 = await load_model_async(model1)
        result2 = await load_model_async(model2)
        return f"Modèle 1: {result1}\nModèle 2: {result2}"

    load_models_button.click(load_both_models, inputs=[model1_selected, model2_selected], outputs=[load_models_output])

    compare_button.click(
        compare_models,
        inputs=[model1_selected, model2_selected, comp_input_text, comp_temperature, comp_top_p, comp_top_k],
        outputs=[model1_output, model2_output, model1_prob_plot, model2_prob_plot, model1_attention_plot, model2_attention_plot]
    )

    comp_reset_button.click(
        reset_comparison,
        outputs=[model1_type, model1_variation, model2_type, model2_variation, model1_selected, model2_selected, comparison_language,
                 comp_temperature, comp_top_p, comp_top_k, comp_input_text, model1_output, model2_output,
                 model1_prob_plot, model2_prob_plot, model1_attention_plot, model2_attention_plot]
    )

if __name__ == "__main__":
    demo.launch()