Unique3D / gradio_app /custom_models /mvimg_prediction.py
Wuvin's picture
add offload
8981664
raw
history blame
1.91 kB
import sys
import torch
import gradio as gr
from PIL import Image
import numpy as np
from rembg import remove
from gradio_app.utils import change_rgba_bg, rgba_to_rgb
from gradio_app.custom_models.utils import load_pipeline
from scripts.all_typing import *
from scripts.utils import session, simple_preprocess
training_config = "gradio_app/custom_models/image2mvimage.yaml"
checkpoint_path = "ckpt/img2mvimg/unet_state_dict.pth"
def predict(img_list: List[Image.Image], guidance_scale=2., **kwargs):
trainer, pipeline = load_pipeline(training_config, checkpoint_path)
pipeline.enable_model_cpu_offload()
if isinstance(img_list, Image.Image):
img_list = [img_list]
img_list = [rgba_to_rgb(i) if i.mode == 'RGBA' else i for i in img_list]
ret = []
for img in img_list:
images = trainer.pipeline_forward(
pipeline=pipeline,
image=img,
guidance_scale=guidance_scale,
**kwargs
).images
ret.extend(images)
return ret
def run_mvprediction(input_image: Image.Image, remove_bg=True, guidance_scale=1.5, seed=1145):
if input_image.mode == 'RGB' or np.array(input_image)[..., -1].mean() == 255.:
# still do remove using rembg, since simple_preprocess requires RGBA image
print("RGB image not RGBA! still remove bg!")
remove_bg = True
if remove_bg:
input_image = remove(input_image, session=session)
# make front_pil RGBA with white bg
input_image = change_rgba_bg(input_image, "white")
single_image = simple_preprocess(input_image)
generator = torch.Generator(device="cuda").manual_seed(int(seed)) if seed >= 0 else None
rgb_pils = predict(
single_image,
generator=generator,
guidance_scale=guidance_scale,
width=256,
height=256,
num_inference_steps=30,
)
return rgb_pils, single_image