Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# modified by Wuvin | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionImageVariationPipeline | |
from diffusers.schedulers import KarrasDiffusionSchedulers, DDPMScheduler | |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker, StableDiffusionPipelineOutput | |
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel | |
from PIL import Image | |
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
class StableDiffusionImage2MVCustomPipeline( | |
StableDiffusionImageVariationPipeline | |
): | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
image_encoder: CLIPVisionModelWithProjection, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
requires_safety_checker: bool = True, | |
latents_offset=None, | |
noisy_cond_latents=False, | |
condition_offset=True, | |
): | |
super().__init__( | |
vae=vae, | |
image_encoder=image_encoder, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
requires_safety_checker=requires_safety_checker | |
) | |
latents_offset = tuple(latents_offset) if latents_offset is not None else None | |
self.latents_offset = latents_offset | |
if latents_offset is not None: | |
self.register_to_config(latents_offset=latents_offset) | |
if noisy_cond_latents: | |
raise NotImplementedError("Noisy condition latents not supported Now.") | |
self.condition_offset = condition_offset | |
self.register_to_config(condition_offset=condition_offset) | |
def encode_latents(self, image: Image.Image, device, dtype, height, width): | |
images = self.image_processor.preprocess(image.convert("RGB"), height=height, width=width).to(device, dtype=dtype) | |
# NOTE: .mode() for condition | |
latents = self.vae.encode(images).latent_dist.mode() * self.vae.config.scaling_factor | |
if self.latents_offset is not None and self.condition_offset: | |
return latents - torch.tensor(self.latents_offset).to(latents.device)[None, :, None, None] | |
else: | |
return latents | |
def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if not isinstance(image, torch.Tensor): | |
image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
image = image.to(device=device, dtype=dtype) | |
image_embeddings = self.image_encoder(image).image_embeds | |
image_embeddings = image_embeddings.unsqueeze(1) | |
# duplicate image embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = image_embeddings.shape | |
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
# NOTE: the same as original code | |
negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
return image_embeddings | |
def __call__( | |
self, | |
image: Union[Image.Image, List[Image.Image], torch.FloatTensor], | |
height: Optional[int] = 1024, | |
width: Optional[int] = 1024, | |
height_cond: Optional[int] = 512, | |
width_cond: Optional[int] = 512, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
image (`Image.Image` or `List[Image.Image]` or `torch.FloatTensor`): | |
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with | |
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. This parameter is modulated by `strength`. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
Examples: | |
```py | |
from diffusers import StableDiffusionImageVariationPipeline | |
from PIL import Image | |
from io import BytesIO | |
import requests | |
pipe = StableDiffusionImageVariationPipeline.from_pretrained( | |
"lambdalabs/sd-image-variations-diffusers", revision="v2.0" | |
) | |
pipe = pipe.to("cuda") | |
url = "https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200" | |
response = requests.get(url) | |
image = Image.open(BytesIO(response.content)).convert("RGB") | |
out = pipe(image, num_images_per_prompt=3, guidance_scale=15) | |
out["images"][0].save("result.jpg") | |
``` | |
""" | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs(image, height, width, callback_steps) | |
# 2. Define call parameters | |
if isinstance(image, Image.Image): | |
batch_size = 1 | |
elif len(image) == 1: | |
image = image[0] | |
batch_size = 1 | |
else: | |
raise NotImplementedError() | |
# elif isinstance(image, list): | |
# batch_size = len(image) | |
# else: | |
# batch_size = image.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input image | |
emb_image = image | |
image_embeddings = self._encode_image(emb_image, device, num_images_per_prompt, do_classifier_free_guidance) | |
cond_latents = self.encode_latents(image, image_embeddings.device, image_embeddings.dtype, height_cond, width_cond) | |
cond_latents = torch.cat([torch.zeros_like(cond_latents), cond_latents]) if do_classifier_free_guidance else cond_latents | |
image_pixels = self.feature_extractor(images=emb_image, return_tensors="pt").pixel_values | |
if do_classifier_free_guidance: | |
image_pixels = torch.cat([torch.zeros_like(image_pixels), image_pixels], dim=0) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.out_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
image_embeddings.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings, condition_latents=cond_latents, noisy_condition_input=False, cond_pixels_clip=image_pixels).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
self.maybe_free_model_hooks() | |
if self.latents_offset is not None: | |
latents = latents + torch.tensor(self.latents_offset).to(latents.device)[None, :, None, None] | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, image_embeddings.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
if __name__ == "__main__": | |
pass | |