Unique3D / gradio_app /gradio_3dgen.py
Wuvin's picture
rename files
5a3e910
raw
history blame
3.63 kB
import os
import gradio as gr
from PIL import Image
from pytorch3d.structures import Meshes
from gradio_app.utils import clean_up
from gradio_app.custom_models.mvimg_prediction import run_mvprediction
from gradio_app.custom_models.normal_prediction import predict_normals
from scripts.refine_lr_to_sr import run_sr_fast
from scripts.utils import save_glb_and_video
from scripts.multiview_inference import geo_reconstruct
def generate3dv2(preview_img, input_processing, seed, render_video=True, do_refine=True, expansion_weight=0.1, init_type="std"):
if preview_img is None:
raise gr.Error("preview_img is none")
if isinstance(preview_img, str):
preview_img = Image.open(preview_img)
if preview_img.size[0] <= 512:
preview_img = run_sr_fast([preview_img])[0]
rgb_pils, front_pil = run_mvprediction(preview_img, remove_bg=input_processing, seed=int(seed)) # 6s
new_meshes = geo_reconstruct(rgb_pils, None, front_pil, do_refine=do_refine, predict_normal=True, expansion_weight=expansion_weight, init_type=init_type)
vertices = new_meshes.verts_packed()
vertices = vertices / 2 * 1.35
vertices[..., [0, 2]] = - vertices[..., [0, 2]]
new_meshes = Meshes(verts=[vertices], faces=new_meshes.faces_list(), textures=new_meshes.textures)
ret_mesh, video = save_glb_and_video("/tmp/gradio/generated", new_meshes, with_timestamp=True, dist=3.5, fov_in_degrees=2 / 1.35, cam_type="ortho", export_video=render_video)
return ret_mesh, video
#######################################
def create_ui(concurrency_id="wkl"):
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(type='pil', image_mode='RGBA', label='Frontview')
example_folder = os.path.join(os.path.dirname(__file__), "./examples")
example_fns = sorted([os.path.join(example_folder, example) for example in os.listdir(example_folder)])
gr.Examples(
examples=example_fns,
inputs=[input_image],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=12
)
with gr.Column(scale=3):
# export mesh display
output_mesh = gr.Model3D(value=None, label="Mesh Model", show_label=True, height=320)
output_video = gr.Video(label="Preview", show_label=True, show_share_button=True, height=320, visible=False)
input_processing = gr.Checkbox(
value=True,
label='Remove Background',
visible=True,
)
do_refine = gr.Checkbox(value=True, label="Refine Multiview Details", visible=False)
expansion_weight = gr.Slider(minimum=-1., maximum=1.0, value=0.1, step=0.1, label="Expansion Weight", visible=False)
init_type = gr.Dropdown(choices=["std", "thin"], label="Mesh Initialization", value="std", visible=False)
setable_seed = gr.Slider(-1, 1000000000, -1, step=1, visible=True, label="Seed")
render_video = gr.Checkbox(value=False, visible=False, label="generate video")
fullrunv2_btn = gr.Button('Generate 3D', interactive=True)
fullrunv2_btn.click(
fn = generate3dv2,
inputs=[input_image, input_processing, setable_seed, render_video, do_refine, expansion_weight, init_type],
outputs=[output_mesh, output_video],
concurrency_id=concurrency_id,
api_name="generate3dv2",
).success(clean_up, api_name=False)
return input_image