Unique3D / scripts /upsampler.py
Wuvin's picture
init
37aeb5b
import cv2
import math
import numpy as np
import os
import torch
from torch.nn import functional as F
from scripts.load_onnx import load_onnx_caller
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
class RealESRGANer():
"""A helper class for upsampling images with RealESRGAN.
Args:
scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
model (nn.Module): The defined network. Default: None.
tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
input images into tiles, and then process each of them. Finally, they will be merged into one image.
0 denotes for do not use tile. Default: 0.
tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
half (float): Whether to use half precision during inference. Default: False.
"""
def __init__(self,
scale,
onnx_path,
tile=0,
tile_pad=10,
pre_pad=10,
half=False,
device=None,
gpu_id=None):
self.scale = scale
self.tile_size = tile
self.tile_pad = tile_pad
self.pre_pad = pre_pad
self.mod_scale = None
self.half = half
# initialize model
if gpu_id:
self.device = torch.device(
f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu') if device is None else device
else:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
self.model = load_onnx_caller(onnx_path, single_output=True)
# warm up
sample_input = torch.randn(1,3,512,512).cuda().float()
self.model(sample_input)
def pre_process(self, img):
"""Pre-process, such as pre-pad and mod pad, so that the images can be divisible
"""
img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
self.img = img.unsqueeze(0).to(self.device)
if self.half:
self.img = self.img.half()
# pre_pad
if self.pre_pad != 0:
self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
# mod pad for divisible borders
if self.scale == 2:
self.mod_scale = 2
elif self.scale == 1:
self.mod_scale = 4
if self.mod_scale is not None:
self.mod_pad_h, self.mod_pad_w = 0, 0
_, _, h, w = self.img.size()
if (h % self.mod_scale != 0):
self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
if (w % self.mod_scale != 0):
self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
def process(self):
# model inference
self.output = self.model(self.img)
def tile_process(self):
"""It will first crop input images to tiles, and then process each tile.
Finally, all the processed tiles are merged into one images.
Modified from: https://github.com/ata4/esrgan-launcher
"""
batch, channel, height, width = self.img.shape
output_height = height * self.scale
output_width = width * self.scale
output_shape = (batch, channel, output_height, output_width)
# start with black image
self.output = self.img.new_zeros(output_shape)
tiles_x = math.ceil(width / self.tile_size)
tiles_y = math.ceil(height / self.tile_size)
# loop over all tiles
for y in range(tiles_y):
for x in range(tiles_x):
# extract tile from input image
ofs_x = x * self.tile_size
ofs_y = y * self.tile_size
# input tile area on total image
input_start_x = ofs_x
input_end_x = min(ofs_x + self.tile_size, width)
input_start_y = ofs_y
input_end_y = min(ofs_y + self.tile_size, height)
# input tile area on total image with padding
input_start_x_pad = max(input_start_x - self.tile_pad, 0)
input_end_x_pad = min(input_end_x + self.tile_pad, width)
input_start_y_pad = max(input_start_y - self.tile_pad, 0)
input_end_y_pad = min(input_end_y + self.tile_pad, height)
# input tile dimensions
input_tile_width = input_end_x - input_start_x
input_tile_height = input_end_y - input_start_y
tile_idx = y * tiles_x + x + 1
input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
# upscale tile
try:
with torch.no_grad():
output_tile = self.model(input_tile)
except RuntimeError as error:
print('Error', error)
print(f'\tTile {tile_idx}/{tiles_x * tiles_y}')
# output tile area on total image
output_start_x = input_start_x * self.scale
output_end_x = input_end_x * self.scale
output_start_y = input_start_y * self.scale
output_end_y = input_end_y * self.scale
# output tile area without padding
output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
# put tile into output image
self.output[:, :, output_start_y:output_end_y,
output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
output_start_x_tile:output_end_x_tile]
def post_process(self):
# remove extra pad
if self.mod_scale is not None:
_, _, h, w = self.output.size()
self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
# remove prepad
if self.pre_pad != 0:
_, _, h, w = self.output.size()
self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
return self.output
@torch.no_grad()
def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'):
h_input, w_input = img.shape[0:2]
# img: numpy
img = img.astype(np.float32)
if np.max(img) > 256: # 16-bit image
max_range = 65535
print('\tInput is a 16-bit image')
else:
max_range = 255
img = img / max_range
if len(img.shape) == 2: # gray image
img_mode = 'L'
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
elif img.shape[2] == 4: # RGBA image with alpha channel
img_mode = 'RGBA'
alpha = img[:, :, 3]
img = img[:, :, 0:3]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if alpha_upsampler == 'realesrgan':
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
else:
img_mode = 'RGB'
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# ------------------- process image (without the alpha channel) ------------------- #
self.pre_process(img)
if self.tile_size > 0:
self.tile_process()
else:
self.process()
output_img = self.post_process()
output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy()
output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
if img_mode == 'L':
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
# ------------------- process the alpha channel if necessary ------------------- #
if img_mode == 'RGBA':
if alpha_upsampler == 'realesrgan':
self.pre_process(alpha)
if self.tile_size > 0:
self.tile_process()
else:
self.process()
output_alpha = self.post_process()
output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
else: # use the cv2 resize for alpha channel
h, w = alpha.shape[0:2]
output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR)
# merge the alpha channel
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
output_img[:, :, 3] = output_alpha
# ------------------------------ return ------------------------------ #
if max_range == 65535: # 16-bit image
output = (output_img * 65535.0).round().astype(np.uint16)
else:
output = (output_img * 255.0).round().astype(np.uint8)
if outscale is not None and outscale != float(self.scale):
output = cv2.resize(
output, (
int(w_input * outscale),
int(h_input * outscale),
), interpolation=cv2.INTER_LANCZOS4)
return output, img_mode