import gradio as gr import transformers import torch import yaml from dearth_config import DearthConfig from dearth_model import DearthForCausalLM import random import time import threading import asyncio tk = None model_states = None lock_using_model = threading.Lock() recent_generate_timestamp = time.time() MODEL_LIVE_TIME = 5 * 60 # 5 minutes def load_model(): global tk, model_states tk = transformers.AutoTokenizer.from_pretrained("./tk") model_path = "./ts100-re2-h1-4000-model.pt" states = torch.load(model_path, map_location="cpu") model_states = states unwanted_prefix_dueto_compile = '_orig_mod.' unwanted_prefix_dueto_ddp = 'module.' unwanted_prefix_dueto_ddp_compiled = 'module._orig_mod.' for k,v in list(model_states.items()): if k.startswith(unwanted_prefix_dueto_ddp_compiled): new_key = k[len(unwanted_prefix_dueto_ddp_compiled):] model_states[new_key] = model_states.pop(k) elif k.startswith(unwanted_prefix_dueto_ddp): new_key = k[len(unwanted_prefix_dueto_ddp):] model_states[new_key] = model_states.pop(k) elif k.startswith(unwanted_prefix_dueto_compile): new_key = k[len(unwanted_prefix_dueto_compile):] model_states[new_key] = model_states.pop(k) def main_free_mem(): event_loop = asyncio.new_event_loop() asyncio.set_event_loop(event_loop) event_loop.call_later(MODEL_LIVE_TIME, free_mem) event_loop.run_forever() def free_mem(): global tk, model_states, recent_generate_timestamp, lock_using_model lock_using_model.acquire() if time.time() - recent_generate_timestamp >= MODEL_LIVE_TIME and tk is not None: tk = None model_states = None print(f"free mem, {time.time()}") lock_using_model.release() try: event_loop = asyncio.get_event_loop() event_loop.call_later(MODEL_LIVE_TIME, free_mem) except: pass def generate(input, num_more_tokens): global tk, model_states, model, recent_generate_timestamp, lock_using_model lock_using_model.acquire() time_start = time.time() if tk is None: load_model() elif time.time() - recent_generate_timestamp > MODEL_LIVE_TIME: tk = None model_states = None load_model() yml_path = "./ts100-re2-h1.yml" with open(yml_path, "r") as f: config = yaml.load(f, Loader=yaml.FullLoader)['model'] if "vocab_size" not in config: config['vocab_size'] = tk.vocab_size config["attn_window_size"] = 500 # print(config) config = DearthConfig(**config) model = DearthForCausalLM(config) model.load_state_dict(model_states) model.eval() recent_generate_timestamp = time.time() print(f"load model time: {time.time() - time_start}") time_start = time.time() num_more_tokens = int(num_more_tokens) # print(input) input = input.strip() input_ids = tk.encode(input) input_ids = [tk.bos_token_id] + input_ids input_ids = torch.tensor(input_ids, dtype=torch.long).view(1, -1) # print(input_ids) print(f"encode time: {time.time() - time_start}") time_start = time.time() output_ids = input_ids.squeeze(0).tolist() for i in range(num_more_tokens): input = torch.tensor(output_ids, dtype=torch.long).view(1, -1) with torch.no_grad(): output = model(input)[0] last_token_logits = output[0, -1, :] last_token_logits_topk = torch.topk(last_token_logits, k=5, dim=-1) probs = torch.softmax(last_token_logits_topk.values, dim=-1) new_token = torch.multinomial(probs, num_samples=1).item() new_token = last_token_logits_topk.indices[new_token].item() if new_token == tk.eos_token_id: break output_ids.append(new_token) # print(output_ids) # print(tk.decode(output_ids)) output_ids = output_ids[1:] print(f"inference time: {time.time() - time_start}\n") ret = tk.decode(output_ids) lock_using_model.release() return ret example_input = ["Once upon a time, there was a little girl", "John and Sarah were playing together in their backyard when", "It was a warm summer day when Billy and", ] ui_title = "Tinystories LM 11M" Description = """ This is a small language model with 11M parameters, trained with the TinyStories dataset, and distilled from a 28M parameter teacher model.\n This model has been trained with 512M tokens, which is about 0.9 epoch of the TinyStories dataset.\n The PPL on the validation set is 1.7, in comparison, the teacher model has a PPL of 0.9. Lower PPL means better performance.\n """ if __name__ == "__main__": load_model() thread_free_mem = threading.Thread(target=main_free_mem) thread_free_mem.start() with gr.Blocks( title="Tinystories LM 11M", js="./random_input_example.js" ) as demo: with gr.Blocks(title="Description"): gr.HTML(f"