import torch import re import gradio as gr from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel import cohere device='cpu' encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) def predict(department,image,max_length=64, num_beams=4): image = image.convert('RGB') image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] caption_ids = model.generate(image, max_length = max_length)[0] caption_text = clean_text(tokenizer.decode(caption_ids)) dept=department context= caption_text response = co.generate( model='large', prompt=f'create non offensive one line meme for given department and context\n\ndepartment- data science\ncontext-a man sitting on a bench with a laptop\nmeme- \"I\'m not a data scientist, but I play one on my laptop.\"\n\ndepartment-startup\ncontext-a young boy is smiling while using a laptop\nmeme-\"When your startup gets funded and you can finally afford a new laptop\"\n\ndepartment- {dept}\ncontext-{context}\nmeme-', max_tokens=20, temperature=0.8, k=0, p=0.75, frequency_penalty=0, presence_penalty=0, stop_sequences=["department"], return_likelihoods='NONE') reponse=response.generations[0].text reponse = reponse.replace("department", "") Feedback_SQL="DEPT"+dept+"CAPT"+caption_text+"MAMAY"+reponse return reponse # input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True) output = gr.outputs.Textbox(type="auto",label="Meme") #examples = [f"example{i}.jpg" for i in range(1,7)] #examples = os.listdir() description= "meme generation using advanced NLP " title = "Meme world 🖼️" dropdown=["data science ", "product management","marketing","startup" ,"agile","crypto" , "SEO" ] article = "Created By : Xaheen " interface = gr.Interface( fn=predict, inputs = [gr.inputs.Dropdown(dropdown),gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)], theme="grass", outputs=output, # examples = examples, title=title, description=description, article = article, ) interface.launch(debug=True) # c0here2022