File size: 7,207 Bytes
380857f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import os
import sys
import argparse
import random
import time
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from utils.utils import instantiate_from_config
sys.path.insert(0, "scripts/evaluation")
from funcs import (
    batch_ddim_sampling,
    load_model_checkpoint,
    get_latent_z,
    save_videos
)

def download_model():
    REPO_ID = 'Doubiiu/DynamiCrafter'
    filename_list = ['model.ckpt']
    if not os.path.exists('./checkpoints/dynamicrafter_256_v1/'):
        os.makedirs('./checkpoints/dynamicrafter_256_v1/')
    for filename in filename_list:
        local_file = os.path.join('./checkpoints/dynamicrafter_256_v1/', filename)
        if not os.path.exists(local_file):
            hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_256_v1/', force_download=True)
    

def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
    download_model()
    ckpt_path='checkpoints/dynamicrafter_256_v1/model.ckpt'
    config_file='configs/inference_256_v1.0.yaml'
    config = OmegaConf.load(config_file)
    model_config = config.pop("model", OmegaConf.create())
    model_config['params']['unet_config']['params']['use_checkpoint']=False   
    model = instantiate_from_config(model_config)
    assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
    model = load_model_checkpoint(model, ckpt_path)
    model.eval()
    model = model.cuda()
    save_fps = 8

    seed_everything(seed)
    transform = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(256),
        ])
    torch.cuda.empty_cache()
    print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
    start = time.time()
    if steps > 60:
        steps = 60 

    batch_size=1
    channels = model.model.diffusion_model.out_channels
    frames = model.temporal_length
    h, w = 256 // 8, 256 // 8
    noise_shape = [batch_size, channels, frames, h, w]

    # text cond
    text_emb = model.get_learned_conditioning([prompt])

    # img cond
    img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
    img_tensor = (img_tensor / 255. - 0.5) * 2

    image_tensor_resized = transform(img_tensor) #3,256,256
    videos = image_tensor_resized.unsqueeze(0) # bchw
    
    z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
    
    img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)

    cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
    img_emb = model.image_proj_model(cond_images)

    imtext_cond = torch.cat([text_emb, img_emb], dim=1)

    fs = torch.tensor([fs], dtype=torch.long, device=model.device)
    cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
    
    ## inference
    batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
    ## b,samples,c,t,h,w

    video_path = './output.mp4'
    save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
    model = model.cpu()
    return video_path






i2v_examples = [
    ['prompts/256/art.png', 'man fishing in a boat at sunset', 50, 7.5, 1.0, 3, 234],
    ['prompts/256/boy.png', 'boy walking on the street', 50, 7.5, 1.0, 3, 125],
    ['prompts/256/dance1.jpeg', 'two people dancing', 50, 7.5, 1.0, 3, 116],
    ['prompts/256/fire_and_beach.jpg', 'a campfire on the beach and the ocean waves in the background', 50, 7.5, 1.0, 3, 111],
    ['prompts/256/girl3.jpeg', 'girl talking and blinking', 50, 7.5, 1.0, 3, 111],
    ['prompts/256/guitar0.jpeg', 'bear playing guitar happily, snowing', 50, 7.5, 1.0, 3, 122],
]
css = """#input_img {max-width: 256px !important} #output_vid {max-width: 256px; max-height: 256px}"""

with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
    gr.Markdown("<div align='center'> <h1> DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors </span> </h1> \
                    <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
                    <a href='https://doubiiu.github.io/'>Jinbo Xing</a>, \
                    <a href='https://menghanxia.github.io/'>Menghan Xia</a>, <a href='https://yzhang2016.github.io/'>Yong Zhang</a>, \
                    <a href=''>Haoxin Chen</a>, <a href=''> Wangbo Yu</a>,\
                    <a href='https://github.com/hyliu'>Hanyuan Liu</a>, <a href='https://xinntao.github.io/'>Xintao Wang</a>,\
                    <a href='https://www.cse.cuhk.edu.hk/~ttwong/myself.html'>Tien-Tsin Wong</a>,\
                    <a href='https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=zh-CN'>Ying Shan</a>\
                </h2> \
                    <a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2310.12190'> [ArXiv] </a>\
                    <a style='font-size:18px;color: #000000' href='https://doubiiu.github.io/projects/DynamiCrafter/'> [Project Page] </a> \
                    <a style='font-size:18px;color: #000000' href='https://github.com/Doubiiu/DynamiCrafter'> [Github] </a> </div>")
    
    with gr.Tab(label='ImageAnimation_256x256'):
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
                    with gr.Row():
                        i2v_input_text = gr.Text(label='Prompts')
                    with gr.Row():
                        i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
                        i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
                        i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
                    with gr.Row():
                        i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
                        i2v_motion = gr.Slider(minimum=1, maximum=4, step=1, elem_id="i2v_motion", label="Motion magnitude", value=3)
                    i2v_end_btn = gr.Button("Generate")
                # with gr.Tab(label='Result'):
                with gr.Row():
                    i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)

            gr.Examples(examples=i2v_examples,
                        inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
                        outputs=[i2v_output_video],
                        fn = infer,
            )
        i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
                        outputs=[i2v_output_video],
                        fn = infer
        )

dynamicrafter_iface.queue(max_size=12).launch(show_api=True)