|
|
|
|
|
import PIL |
|
from PIL import Image |
|
import torch |
|
import os |
|
import torchvision.transforms.functional as F |
|
import numpy as np |
|
import random |
|
|
|
from .random_crop import random_crop |
|
from util.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh |
|
|
|
class AdjustContrast: |
|
def __init__(self, contrast_factor): |
|
self.contrast_factor = contrast_factor |
|
|
|
def __call__(self, img, target): |
|
""" |
|
img (PIL Image or Tensor): Image to be adjusted. |
|
""" |
|
_contrast_factor = ((random.random() + 1.0) / 2.0) * self.contrast_factor |
|
img = F.adjust_contrast(img, _contrast_factor) |
|
return img, target |
|
|
|
class AdjustBrightness: |
|
def __init__(self, brightness_factor): |
|
self.brightness_factor = brightness_factor |
|
|
|
def __call__(self, img, target): |
|
""" |
|
img (PIL Image or Tensor): Image to be adjusted. |
|
""" |
|
_brightness_factor = ((random.random() + 1.0) / 2.0) * self.brightness_factor |
|
img = F.adjust_brightness(img, _brightness_factor) |
|
return img, target |
|
|
|
def lighting_noise(image): |
|
''' |
|
color channel swap in image |
|
image: A PIL image |
|
''' |
|
new_image = image |
|
perms = ((0, 1, 2), (0, 2, 1), (1, 0, 2), |
|
(1, 2, 0), (2, 0, 1), (2, 1, 0)) |
|
swap = perms[random.randint(0, len(perms)- 1)] |
|
new_image = F.to_tensor(new_image) |
|
new_image = new_image[swap, :, :] |
|
new_image = F.to_pil_image(new_image) |
|
return new_image |
|
|
|
class LightingNoise: |
|
def __init__(self) -> None: |
|
pass |
|
|
|
def __call__(self, img, target): |
|
return lighting_noise(img), target |
|
|
|
|
|
def rotate(image, boxes, angle): |
|
''' |
|
Rotate image and bounding box |
|
image: A Pil image (w, h) |
|
boxes: A tensors of dimensions (#objects, 4) |
|
|
|
Out: rotated image (w, h), rotated boxes |
|
''' |
|
new_image = image.copy() |
|
new_boxes = boxes.clone() |
|
|
|
|
|
w = image.width |
|
h = image.height |
|
cx = w/2 |
|
cy = h/2 |
|
new_image = new_image.rotate(angle, expand=True) |
|
angle = np.radians(angle) |
|
alpha = np.cos(angle) |
|
beta = np.sin(angle) |
|
|
|
AffineMatrix = torch.tensor([[alpha, beta, (1-alpha)*cx - beta*cy], |
|
[-beta, alpha, beta*cx + (1-alpha)*cy]]) |
|
|
|
|
|
box_width = (boxes[:,2] - boxes[:,0]).reshape(-1,1) |
|
box_height = (boxes[:,3] - boxes[:,1]).reshape(-1,1) |
|
|
|
|
|
x1 = boxes[:,0].reshape(-1,1) |
|
y1 = boxes[:,1].reshape(-1,1) |
|
|
|
x2 = x1 + box_width |
|
y2 = y1 |
|
|
|
x3 = x1 |
|
y3 = y1 + box_height |
|
|
|
x4 = boxes[:,2].reshape(-1,1) |
|
y4 = boxes[:,3].reshape(-1,1) |
|
|
|
corners = torch.stack((x1,y1,x2,y2,x3,y3,x4,y4), dim= 1) |
|
|
|
corners = corners.reshape(-1,2) |
|
corners = torch.cat((corners, torch.ones(corners.shape[0], 1)), dim= 1) |
|
|
|
cos = np.abs(AffineMatrix[0, 0]) |
|
sin = np.abs(AffineMatrix[0, 1]) |
|
|
|
nW = int((h * sin) + (w * cos)) |
|
nH = int((h * cos) + (w * sin)) |
|
AffineMatrix[0, 2] += (nW / 2) - cx |
|
AffineMatrix[1, 2] += (nH / 2) - cy |
|
|
|
|
|
|
|
rotate_corners = torch.mm(AffineMatrix, corners.t().to(torch.float64)).t() |
|
rotate_corners = rotate_corners.reshape(-1,8) |
|
|
|
x_corners = rotate_corners[:,[0,2,4,6]] |
|
y_corners = rotate_corners[:,[1,3,5,7]] |
|
|
|
|
|
x_min, _ = torch.min(x_corners, dim= 1) |
|
x_min = x_min.reshape(-1, 1) |
|
y_min, _ = torch.min(y_corners, dim= 1) |
|
y_min = y_min.reshape(-1, 1) |
|
x_max, _ = torch.max(x_corners, dim= 1) |
|
x_max = x_max.reshape(-1, 1) |
|
y_max, _ = torch.max(y_corners, dim= 1) |
|
y_max = y_max.reshape(-1, 1) |
|
|
|
new_boxes = torch.cat((x_min, y_min, x_max, y_max), dim= 1) |
|
|
|
scale_x = new_image.width / w |
|
scale_y = new_image.height / h |
|
|
|
|
|
|
|
new_image = new_image.resize((w, h)) |
|
|
|
|
|
new_boxes /= torch.Tensor([scale_x, scale_y, scale_x, scale_y]) |
|
new_boxes[:, 0] = torch.clamp(new_boxes[:, 0], 0, w) |
|
new_boxes[:, 1] = torch.clamp(new_boxes[:, 1], 0, h) |
|
new_boxes[:, 2] = torch.clamp(new_boxes[:, 2], 0, w) |
|
new_boxes[:, 3] = torch.clamp(new_boxes[:, 3], 0, h) |
|
return new_image, new_boxes |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Rotate: |
|
def __init__(self, angle=10) -> None: |
|
self.angle = angle |
|
|
|
def __call__(self, img, target): |
|
w,h = img.size |
|
whwh = torch.Tensor([w, h, w, h]) |
|
boxes_xyxy = box_cxcywh_to_xyxy(target['boxes']) * whwh |
|
img, boxes_new = rotate(img, boxes_xyxy, self.angle) |
|
target['boxes'] = box_xyxy_to_cxcywh(boxes_new).to(boxes_xyxy.dtype) / (whwh + 1e-3) |
|
return img, target |
|
|
|
|
|
class RandomCrop: |
|
def __init__(self) -> None: |
|
pass |
|
|
|
def __call__(self, img, target): |
|
w,h = img.size |
|
try: |
|
boxes_xyxy = target['boxes'] |
|
labels = target['labels'] |
|
img, new_boxes, new_labels, _ = random_crop(img, boxes_xyxy, labels) |
|
target['boxes'] = new_boxes |
|
target['labels'] = new_labels |
|
except Exception as e: |
|
pass |
|
return img, target |
|
|
|
|
|
class RandomCropDebug: |
|
def __init__(self) -> None: |
|
pass |
|
|
|
def __call__(self, img, target): |
|
boxes_xyxy = target['boxes'].clone() |
|
labels = target['labels'].clone() |
|
img, new_boxes, new_labels, _ = random_crop(img, boxes_xyxy, labels) |
|
target['boxes'] = new_boxes |
|
target['labels'] = new_labels |
|
|
|
|
|
return img, target |
|
|
|
class RandomSelectMulti(object): |
|
""" |
|
Randomly selects between transforms1 and transforms2, |
|
""" |
|
def __init__(self, transformslist, p=-1): |
|
self.transformslist = transformslist |
|
self.p = p |
|
assert p == -1 |
|
|
|
def __call__(self, img, target): |
|
if self.p == -1: |
|
return random.choice(self.transformslist)(img, target) |
|
|
|
|
|
class Albumentations: |
|
def __init__(self): |
|
import albumentations as A |
|
self.transform = A.Compose([ |
|
A.Blur(p=0.01), |
|
A.MedianBlur(p=0.01), |
|
A.ToGray(p=0.01), |
|
A.CLAHE(p=0.01), |
|
A.RandomBrightnessContrast(p=0.005), |
|
A.RandomGamma(p=0.005), |
|
A.ImageCompression(quality_lower=75, p=0.005)], |
|
bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels'])) |
|
|
|
def __call__(self, img, target, p=1.0): |
|
""" |
|
Input: |
|
target['boxes']: xyxy, unnormalized data. |
|
|
|
""" |
|
boxes_raw = target['boxes'] |
|
labels_raw = target['labels'] |
|
img_np = np.array(img) |
|
if self.transform and random.random() < p: |
|
new_res = self.transform(image=img_np, bboxes=boxes_raw, class_labels=labels_raw) |
|
boxes_new = torch.Tensor(new_res['bboxes']).to(boxes_raw.dtype).reshape_as(boxes_raw) |
|
img_np = new_res['image'] |
|
labels_new = torch.Tensor(new_res['class_labels']).to(labels_raw.dtype) |
|
img_new = Image.fromarray(img_np) |
|
target['boxes'] = boxes_new |
|
target['labels'] = labels_new |
|
|
|
return img_new, target |