|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import warnings |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.autograd import Function |
|
from torch.autograd.function import once_differentiable |
|
from torch.nn.init import constant_, xavier_uniform_ |
|
|
|
try: |
|
|
|
import MultiScaleDeformableAttention as _C |
|
except: |
|
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!") |
|
|
|
|
|
|
|
def _is_power_of_2(n): |
|
if (not isinstance(n, int)) or (n < 0): |
|
raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n))) |
|
return (n & (n - 1) == 0) and n != 0 |
|
|
|
|
|
class MultiScaleDeformableAttnFunction(Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
value, |
|
value_spatial_shapes, |
|
value_level_start_index, |
|
sampling_locations, |
|
attention_weights, |
|
im2col_step, |
|
): |
|
ctx.im2col_step = im2col_step |
|
output = _C.ms_deform_attn_forward( |
|
value, |
|
value_spatial_shapes, |
|
value_level_start_index, |
|
sampling_locations, |
|
attention_weights, |
|
ctx.im2col_step, |
|
) |
|
ctx.save_for_backward( |
|
value, |
|
value_spatial_shapes, |
|
value_level_start_index, |
|
sampling_locations, |
|
attention_weights, |
|
) |
|
return output |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, grad_output): |
|
( |
|
value, |
|
value_spatial_shapes, |
|
value_level_start_index, |
|
sampling_locations, |
|
attention_weights, |
|
) = ctx.saved_tensors |
|
grad_value, grad_sampling_loc, grad_attn_weight = _C.ms_deform_attn_backward( |
|
value, |
|
value_spatial_shapes, |
|
value_level_start_index, |
|
sampling_locations, |
|
attention_weights, |
|
grad_output, |
|
ctx.im2col_step, |
|
) |
|
|
|
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None |
|
|
|
|
|
def multi_scale_deformable_attn_pytorch( |
|
value: torch.Tensor, |
|
value_spatial_shapes: torch.Tensor, |
|
sampling_locations: torch.Tensor, |
|
attention_weights: torch.Tensor, |
|
) -> torch.Tensor: |
|
|
|
bs, _, num_heads, embed_dims = value.shape |
|
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape |
|
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) |
|
sampling_grids = 2 * sampling_locations - 1 |
|
sampling_value_list = [] |
|
for level, (H_, W_) in enumerate(value_spatial_shapes): |
|
|
|
|
|
|
|
|
|
value_l_ = ( |
|
value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_) |
|
) |
|
|
|
|
|
|
|
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1) |
|
|
|
sampling_value_l_ = F.grid_sample( |
|
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False |
|
) |
|
sampling_value_list.append(sampling_value_l_) |
|
|
|
|
|
|
|
attention_weights = attention_weights.transpose(1, 2).reshape( |
|
bs * num_heads, 1, num_queries, num_levels * num_points |
|
) |
|
output = ( |
|
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights) |
|
.sum(-1) |
|
.view(bs, num_heads * embed_dims, num_queries) |
|
) |
|
return output.transpose(1, 2).contiguous() |
|
|
|
|
|
class MultiScaleDeformableAttention(nn.Module): |
|
"""Multi-Scale Deformable Attention Module used in Deformable-DETR |
|
|
|
`Deformable DETR: Deformable Transformers for End-to-End Object Detection. |
|
<https://arxiv.org/pdf/2010.04159.pdf>`_. |
|
|
|
Args: |
|
embed_dim (int): The embedding dimension of Attention. Default: 256. |
|
num_heads (int): The number of attention heads. Default: 8. |
|
num_levels (int): The number of feature map used in Attention. Default: 4. |
|
num_points (int): The number of sampling points for each query |
|
in each head. Default: 4. |
|
img2col_steps (int): The step used in image_to_column. Defualt: 64. |
|
dropout (float): Dropout layer used in output. Default: 0.1. |
|
batch_first (bool): if ``True``, then the input and output tensor will be |
|
provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)` |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int = 256, |
|
num_heads: int = 8, |
|
num_levels: int = 4, |
|
num_points: int = 4, |
|
img2col_step: int = 64, |
|
batch_first: bool = False, |
|
): |
|
super().__init__() |
|
if embed_dim % num_heads != 0: |
|
raise ValueError( |
|
"embed_dim must be divisible by num_heads, but got {} and {}".format( |
|
embed_dim, num_heads |
|
) |
|
) |
|
head_dim = embed_dim // num_heads |
|
|
|
self.batch_first = batch_first |
|
|
|
if not _is_power_of_2(head_dim): |
|
warnings.warn( |
|
""" |
|
You'd better set d_model in MSDeformAttn to make sure that |
|
each dim of the attention head a power of 2, which is more efficient. |
|
""" |
|
) |
|
|
|
self.im2col_step = img2col_step |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.num_levels = num_levels |
|
self.num_points = num_points |
|
self.sampling_offsets = nn.Linear(embed_dim, num_heads * num_levels * num_points * 2) |
|
self.attention_weights = nn.Linear(embed_dim, num_heads * num_levels * num_points) |
|
self.value_proj = nn.Linear(embed_dim, embed_dim) |
|
self.output_proj = nn.Linear(embed_dim, embed_dim) |
|
|
|
self.init_weights() |
|
|
|
def _reset_parameters(self): |
|
return self.init_weights() |
|
|
|
def init_weights(self): |
|
""" |
|
Default initialization for Parameters of Module. |
|
""" |
|
constant_(self.sampling_offsets.weight.data, 0.0) |
|
thetas = torch.arange(self.num_heads, dtype=torch.float32) * ( |
|
2.0 * math.pi / self.num_heads |
|
) |
|
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) |
|
grid_init = ( |
|
(grid_init / grid_init.abs().max(-1, keepdim=True)[0]) |
|
.view(self.num_heads, 1, 1, 2) |
|
.repeat(1, self.num_levels, self.num_points, 1) |
|
) |
|
for i in range(self.num_points): |
|
grid_init[:, :, i, :] *= i + 1 |
|
with torch.no_grad(): |
|
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) |
|
constant_(self.attention_weights.weight.data, 0.0) |
|
constant_(self.attention_weights.bias.data, 0.0) |
|
xavier_uniform_(self.value_proj.weight.data) |
|
constant_(self.value_proj.bias.data, 0.0) |
|
xavier_uniform_(self.output_proj.weight.data) |
|
constant_(self.output_proj.bias.data, 0.0) |
|
|
|
def freeze_sampling_offsets(self): |
|
print("Freeze sampling offsets") |
|
self.sampling_offsets.weight.requires_grad = False |
|
self.sampling_offsets.bias.requires_grad = False |
|
|
|
def freeze_attention_weights(self): |
|
print("Freeze attention weights") |
|
self.attention_weights.weight.requires_grad = False |
|
self.attention_weights.bias.requires_grad = False |
|
|
|
def forward( |
|
self, |
|
query: torch.Tensor, |
|
key: Optional[torch.Tensor] = None, |
|
value: Optional[torch.Tensor] = None, |
|
query_pos: Optional[torch.Tensor] = None, |
|
key_padding_mask: Optional[torch.Tensor] = None, |
|
reference_points: Optional[torch.Tensor] = None, |
|
spatial_shapes: Optional[torch.Tensor] = None, |
|
level_start_index: Optional[torch.Tensor] = None, |
|
**kwargs |
|
) -> torch.Tensor: |
|
|
|
"""Forward Function of MultiScaleDeformableAttention |
|
|
|
Args: |
|
query (torch.Tensor): Query embeddings with shape |
|
`(num_query, bs, embed_dim)` |
|
key (torch.Tensor): Key embeddings with shape |
|
`(num_key, bs, embed_dim)` |
|
value (torch.Tensor): Value embeddings with shape |
|
`(num_key, bs, embed_dim)` |
|
query_pos (torch.Tensor): The position embedding for `query`. Default: None. |
|
key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`, |
|
indicating which elements within `key` to be ignored in attention. |
|
reference_points (torch.Tensor): The normalized reference points |
|
with shape `(bs, num_query, num_levels, 2)`, |
|
all elements is range in [0, 1], top-left (0, 0), |
|
bottom-right (1, 1), including padding are. |
|
or `(N, Length_{query}, num_levels, 4)`, add additional |
|
two dimensions `(h, w)` to form reference boxes. |
|
spatial_shapes (torch.Tensor): Spatial shape of features in different levels. |
|
With shape `(num_levels, 2)`, last dimension represents `(h, w)`. |
|
level_start_index (torch.Tensor): The start index of each level. A tensor with |
|
shape `(num_levels, )` which can be represented as |
|
`[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`. |
|
|
|
Returns: |
|
torch.Tensor: forward results with shape `(num_query, bs, embed_dim)` |
|
""" |
|
|
|
if value is None: |
|
value = query |
|
|
|
if query_pos is not None: |
|
query = query + query_pos |
|
|
|
if not self.batch_first: |
|
|
|
query = query.permute(1, 0, 2) |
|
value = value.permute(1, 0, 2) |
|
|
|
bs, num_query, _ = query.shape |
|
bs, num_value, _ = value.shape |
|
|
|
assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value |
|
|
|
value = self.value_proj(value) |
|
if key_padding_mask is not None: |
|
value = value.masked_fill(key_padding_mask[..., None], float(0)) |
|
value = value.view(bs, num_value, self.num_heads, -1) |
|
sampling_offsets = self.sampling_offsets(query).view( |
|
bs, num_query, self.num_heads, self.num_levels, self.num_points, 2 |
|
) |
|
attention_weights = self.attention_weights(query).view( |
|
bs, num_query, self.num_heads, self.num_levels * self.num_points |
|
) |
|
attention_weights = attention_weights.softmax(-1) |
|
attention_weights = attention_weights.view( |
|
bs, |
|
num_query, |
|
self.num_heads, |
|
self.num_levels, |
|
self.num_points, |
|
) |
|
|
|
|
|
if reference_points.shape[-1] == 2: |
|
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1) |
|
sampling_locations = ( |
|
reference_points[:, :, None, :, None, :] |
|
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :] |
|
) |
|
elif reference_points.shape[-1] == 4: |
|
sampling_locations = ( |
|
reference_points[:, :, None, :, None, :2] |
|
+ sampling_offsets |
|
/ self.num_points |
|
* reference_points[:, :, None, :, None, 2:] |
|
* 0.5 |
|
) |
|
else: |
|
raise ValueError( |
|
"Last dim of reference_points must be 2 or 4, but get {} instead.".format( |
|
reference_points.shape[-1] |
|
) |
|
) |
|
|
|
if torch.cuda.is_available() and value.is_cuda: |
|
halffloat = False |
|
if value.dtype == torch.float16: |
|
halffloat = True |
|
value = value.float() |
|
sampling_locations = sampling_locations.float() |
|
attention_weights = attention_weights.float() |
|
|
|
output = MultiScaleDeformableAttnFunction.apply( |
|
value, |
|
spatial_shapes, |
|
level_start_index, |
|
sampling_locations, |
|
attention_weights, |
|
self.im2col_step, |
|
) |
|
|
|
if halffloat: |
|
output = output.half() |
|
else: |
|
output = multi_scale_deformable_attn_pytorch( |
|
value, spatial_shapes, sampling_locations, attention_weights |
|
) |
|
|
|
output = self.output_proj(output) |
|
|
|
if not self.batch_first: |
|
output = output.permute(1, 0, 2) |
|
|
|
return output |
|
|
|
|
|
def create_dummy_class(klass, dependency, message=""): |
|
""" |
|
When a dependency of a class is not available, create a dummy class which throws ImportError |
|
when used. |
|
|
|
Args: |
|
klass (str): name of the class. |
|
dependency (str): name of the dependency. |
|
message: extra message to print |
|
Returns: |
|
class: a class object |
|
""" |
|
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, klass) |
|
if message: |
|
err = err + " " + message |
|
|
|
class _DummyMetaClass(type): |
|
|
|
def __getattr__(_, __): |
|
raise ImportError(err) |
|
|
|
class _Dummy(object, metaclass=_DummyMetaClass): |
|
|
|
def __init__(self, *args, **kwargs): |
|
raise ImportError(err) |
|
|
|
return _Dummy |
|
|
|
|
|
def create_dummy_func(func, dependency, message=""): |
|
""" |
|
When a dependency of a function is not available, create a dummy function which throws |
|
ImportError when used. |
|
|
|
Args: |
|
func (str): name of the function. |
|
dependency (str or list[str]): name(s) of the dependency. |
|
message: extra message to print |
|
Returns: |
|
function: a function object |
|
""" |
|
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, func) |
|
if message: |
|
err = err + " " + message |
|
|
|
if isinstance(dependency, (list, tuple)): |
|
dependency = ",".join(dependency) |
|
|
|
def _dummy(*args, **kwargs): |
|
raise ImportError(err) |
|
|
|
return _dummy |
|
|