yopo / models /GroundingDINO /transformer.py
nikigoli's picture
Upload folder using huggingface_hub
a277bb8 verified
raw
history blame
37.5 kB
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# DINO
# Copyright (c) 2022 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Conditional DETR Transformer class.
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
from typing import Optional
import torch
import torch.utils.checkpoint as checkpoint
from torch import Tensor, nn
from groundingdino.util.misc import inverse_sigmoid
from .fuse_modules import BiAttentionBlock
from .ms_deform_attn import MultiScaleDeformableAttention as MSDeformAttn
from .transformer_vanilla import TransformerEncoderLayer
from .utils import (
MLP,
_get_activation_fn,
_get_clones,
gen_encoder_output_proposals,
gen_sineembed_for_position,
get_sine_pos_embed,
)
class Transformer(nn.Module):
def __init__(
self,
d_model=256,
nhead=8,
num_queries=300,
num_encoder_layers=6,
num_unicoder_layers=0,
num_decoder_layers=6,
dim_feedforward=2048,
dropout=0.0,
activation="relu",
normalize_before=False,
return_intermediate_dec=False,
query_dim=4,
num_patterns=0,
# for deformable encoder
num_feature_levels=1,
enc_n_points=4,
dec_n_points=4,
# init query
learnable_tgt_init=False,
# two stage
two_stage_type="no", # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1']
embed_init_tgt=False,
# for text
use_text_enhancer=False,
use_fusion_layer=False,
use_checkpoint=False,
use_transformer_ckpt=False,
use_text_cross_attention=False,
text_dropout=0.1,
fusion_dropout=0.1,
fusion_droppath=0.0,
):
super().__init__()
self.num_feature_levels = num_feature_levels
self.num_encoder_layers = num_encoder_layers
self.num_unicoder_layers = num_unicoder_layers
self.num_decoder_layers = num_decoder_layers
self.num_queries = num_queries
assert query_dim == 4
# choose encoder layer type
encoder_layer = DeformableTransformerEncoderLayer(
d_model,
dim_feedforward,
dropout,
activation,
num_feature_levels,
nhead,
enc_n_points,
)
if use_text_enhancer:
text_enhance_layer = TransformerEncoderLayer(
d_model=d_model,
nhead=nhead // 2,
dim_feedforward=dim_feedforward // 2,
dropout=text_dropout,
)
else:
text_enhance_layer = None
if use_fusion_layer:
feature_fusion_layer = BiAttentionBlock(
v_dim=d_model,
l_dim=d_model,
embed_dim=dim_feedforward // 2,
num_heads=nhead // 2,
dropout=fusion_dropout,
drop_path=fusion_droppath,
)
else:
feature_fusion_layer = None
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
assert encoder_norm is None
self.encoder = TransformerEncoder(
encoder_layer,
num_encoder_layers,
d_model=d_model,
num_queries=num_queries,
text_enhance_layer=text_enhance_layer,
feature_fusion_layer=feature_fusion_layer,
use_checkpoint=use_checkpoint,
use_transformer_ckpt=use_transformer_ckpt,
)
# choose decoder layer type
decoder_layer = DeformableTransformerDecoderLayer(
d_model,
dim_feedforward,
dropout,
activation,
num_feature_levels,
nhead,
dec_n_points,
use_text_cross_attention=use_text_cross_attention,
)
decoder_norm = nn.LayerNorm(d_model)
self.decoder = TransformerDecoder(
decoder_layer,
num_decoder_layers,
decoder_norm,
return_intermediate=return_intermediate_dec,
d_model=d_model,
query_dim=query_dim,
num_feature_levels=num_feature_levels,
)
self.d_model = d_model
self.nhead = nhead
self.dec_layers = num_decoder_layers
self.num_queries = num_queries # useful for single stage model only
self.num_patterns = num_patterns
if not isinstance(num_patterns, int):
Warning("num_patterns should be int but {}".format(type(num_patterns)))
self.num_patterns = 0
if num_feature_levels > 1:
if self.num_encoder_layers > 0:
self.level_embed = nn.Parameter(
torch.Tensor(num_feature_levels, d_model)
)
else:
self.level_embed = None
self.learnable_tgt_init = learnable_tgt_init
assert learnable_tgt_init, "why not learnable_tgt_init"
self.embed_init_tgt = embed_init_tgt
if (two_stage_type != "no" and embed_init_tgt) or (two_stage_type == "no"):
self.tgt_embed = nn.Embedding(self.num_queries, d_model)
nn.init.normal_(self.tgt_embed.weight.data)
else:
self.tgt_embed = None
# for two stage
self.two_stage_type = two_stage_type
assert two_stage_type in [
"no",
"standard",
], "unknown param {} of two_stage_type".format(two_stage_type)
if two_stage_type == "standard":
# anchor selection at the output of encoder
self.enc_output = nn.Linear(d_model, d_model)
self.enc_output_norm = nn.LayerNorm(d_model)
self.two_stage_wh_embedding = None
if two_stage_type == "no":
self.init_ref_points(num_queries) # init self.refpoint_embed
self.enc_out_class_embed = None
self.enc_out_bbox_embed = None
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
for m in self.modules():
if isinstance(m, MSDeformAttn):
m._reset_parameters()
if self.num_feature_levels > 1 and self.level_embed is not None:
nn.init.normal_(self.level_embed)
def get_valid_ratio(self, mask):
_, H, W = mask.shape
valid_H = torch.sum(~mask[:, :, 0], 1)
valid_W = torch.sum(~mask[:, 0, :], 1)
valid_ratio_h = valid_H.float() / H
valid_ratio_w = valid_W.float() / W
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
return valid_ratio
def init_ref_points(self, use_num_queries):
self.refpoint_embed = nn.Embedding(use_num_queries, 4)
def forward(
self,
srcs,
masks,
refpoint_embed,
pos_embeds,
tgt,
attn_mask=None,
text_dict=None,
):
"""
Input:
- srcs: List of multi features [bs, ci, hi, wi]
- masks: List of multi masks [bs, hi, wi]
- refpoint_embed: [bs, num_dn, 4]. None in infer
- pos_embeds: List of multi pos embeds [bs, ci, hi, wi]
- tgt: [bs, num_dn, d_model]. None in infer
"""
# prepare input for encoder
src_flatten = []
mask_flatten = []
lvl_pos_embed_flatten = []
spatial_shapes = []
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
bs, c, h, w = src.shape
spatial_shape = (h, w)
spatial_shapes.append(spatial_shape)
src = src.flatten(2).transpose(1, 2) # bs, hw, c
mask = mask.flatten(1) # bs, hw
pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c
if self.num_feature_levels > 1 and self.level_embed is not None:
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
else:
lvl_pos_embed = pos_embed
lvl_pos_embed_flatten.append(lvl_pos_embed)
src_flatten.append(src)
mask_flatten.append(mask)
src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c
mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw}
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c
spatial_shapes = torch.as_tensor(
spatial_shapes, dtype=torch.long, device=src_flatten.device
)
level_start_index = torch.cat(
(spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])
)
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
# two stage
enc_topk_proposals = enc_refpoint_embed = None
#########################################################
# Begin Encoder
#########################################################
memory, memory_text = self.encoder(
src_flatten,
pos=lvl_pos_embed_flatten,
level_start_index=level_start_index,
spatial_shapes=spatial_shapes,
valid_ratios=valid_ratios,
key_padding_mask=mask_flatten,
memory_text=text_dict["encoded_text"],
text_attention_mask=~text_dict["text_token_mask"],
# we ~ the mask . False means use the token; True means pad the token
position_ids=text_dict["position_ids"],
text_self_attention_masks=text_dict["text_self_attention_masks"],
)
#########################################################
# End Encoder
# - memory: bs, \sum{hw}, c
# - mask_flatten: bs, \sum{hw}
# - lvl_pos_embed_flatten: bs, \sum{hw}, c
# - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
# - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
#########################################################
text_dict["encoded_text"] = memory_text
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
# if memory.isnan().any() | memory.isinf().any():
# import ipdb; ipdb.set_trace()
if self.two_stage_type == "standard": # 把encoder的输出作为proposal
output_memory, output_proposals = gen_encoder_output_proposals(
memory, mask_flatten, spatial_shapes
)
output_memory = self.enc_output_norm(self.enc_output(output_memory))
if text_dict is not None:
enc_outputs_class_unselected = self.enc_out_class_embed(
output_memory, text_dict
)
else:
enc_outputs_class_unselected = self.enc_out_class_embed(output_memory)
topk_logits = enc_outputs_class_unselected.max(-1)[0]
enc_outputs_coord_unselected = (
self.enc_out_bbox_embed(output_memory) + output_proposals
) # (bs, \sum{hw}, 4) unsigmoid
topk = self.num_queries
topk_proposals = torch.topk(topk_logits, topk, dim=1)[1] # bs, nq
# gather boxes
refpoint_embed_undetach = torch.gather(
enc_outputs_coord_unselected,
1,
topk_proposals.unsqueeze(-1).repeat(1, 1, 4),
) # unsigmoid
refpoint_embed_ = refpoint_embed_undetach.detach()
init_box_proposal = torch.gather(
output_proposals, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
).sigmoid() # sigmoid
# gather tgt
tgt_undetach = torch.gather(
output_memory,
1,
topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model),
)
if self.embed_init_tgt:
tgt_ = (
self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
) # nq, bs, d_model
else:
tgt_ = tgt_undetach.detach()
if refpoint_embed is not None:
refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
tgt = torch.cat([tgt, tgt_], dim=1)
else:
refpoint_embed, tgt = refpoint_embed_, tgt_
elif self.two_stage_type == "no":
tgt_ = (
self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
) # nq, bs, d_model
refpoint_embed_ = (
self.refpoint_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
) # nq, bs, 4
if refpoint_embed is not None:
refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
tgt = torch.cat([tgt, tgt_], dim=1)
else:
refpoint_embed, tgt = refpoint_embed_, tgt_
if self.num_patterns > 0:
tgt_embed = tgt.repeat(1, self.num_patterns, 1)
refpoint_embed = refpoint_embed.repeat(1, self.num_patterns, 1)
tgt_pat = self.patterns.weight[None, :, :].repeat_interleave(
self.num_queries, 1
) # 1, n_q*n_pat, d_model
tgt = tgt_embed + tgt_pat
init_box_proposal = refpoint_embed_.sigmoid()
else:
raise NotImplementedError(
"unknown two_stage_type {}".format(self.two_stage_type)
)
#########################################################
# End preparing tgt
# - tgt: bs, NQ, d_model
# - refpoint_embed(unsigmoid): bs, NQ, d_model
#########################################################
#########################################################
# Begin Decoder
#########################################################
# memory torch.Size([2, 16320, 256])
# import pdb;pdb.set_trace()
hs, references = self.decoder(
tgt=tgt.transpose(0, 1),
memory=memory.transpose(0, 1),
memory_key_padding_mask=mask_flatten,
pos=lvl_pos_embed_flatten.transpose(0, 1),
refpoints_unsigmoid=refpoint_embed.transpose(0, 1),
level_start_index=level_start_index,
spatial_shapes=spatial_shapes,
valid_ratios=valid_ratios,
tgt_mask=attn_mask,
memory_text=text_dict["encoded_text"],
text_attention_mask=~text_dict["text_token_mask"],
# we ~ the mask . False means use the token; True means pad the token
)
#########################################################
# End Decoder
# hs: n_dec, bs, nq, d_model
# references: n_dec+1, bs, nq, query_dim
#########################################################
#########################################################
# Begin postprocess
#########################################################
if self.two_stage_type == "standard":
hs_enc = tgt_undetach.unsqueeze(0)
ref_enc = refpoint_embed_undetach.sigmoid().unsqueeze(0)
else:
hs_enc = ref_enc = None
#########################################################
# End postprocess
# hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or (n_enc, bs, nq, d_model) or None
# ref_enc: (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or (n_enc, bs, nq, d_model) or None
#########################################################
return hs, references, hs_enc, ref_enc, init_box_proposal
# hs: (n_dec, bs, nq, d_model)
# references: sigmoid coordinates. (n_dec+1, bs, bq, 4)
# hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None
# ref_enc: sigmoid coordinates. \
# (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None
class TransformerEncoder(nn.Module):
def __init__(
self,
encoder_layer,
num_layers,
d_model=256,
num_queries=300,
enc_layer_share=False,
text_enhance_layer=None,
feature_fusion_layer=None,
use_checkpoint=False,
use_transformer_ckpt=False,
):
"""_summary_
Args:
encoder_layer (_type_): _description_
num_layers (_type_): _description_
norm (_type_, optional): _description_. Defaults to None.
d_model (int, optional): _description_. Defaults to 256.
num_queries (int, optional): _description_. Defaults to 300.
enc_layer_share (bool, optional): _description_. Defaults to False.
"""
super().__init__()
# prepare layers
self.layers = []
self.text_layers = []
self.fusion_layers = []
if num_layers > 0:
self.layers = _get_clones(
encoder_layer, num_layers, layer_share=enc_layer_share
)
if text_enhance_layer is not None:
self.text_layers = _get_clones(
text_enhance_layer, num_layers, layer_share=enc_layer_share
)
if feature_fusion_layer is not None:
self.fusion_layers = _get_clones(
feature_fusion_layer, num_layers, layer_share=enc_layer_share
)
else:
self.layers = []
del encoder_layer
if text_enhance_layer is not None:
self.text_layers = []
del text_enhance_layer
if feature_fusion_layer is not None:
self.fusion_layers = []
del feature_fusion_layer
self.query_scale = None
self.num_queries = num_queries
self.num_layers = num_layers
self.d_model = d_model
self.use_checkpoint = use_checkpoint
self.use_transformer_ckpt = use_transformer_ckpt
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
reference_points_list = []
for lvl, (H_, W_) in enumerate(spatial_shapes):
ref_y, ref_x = torch.meshgrid(
torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device),
)
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
def forward(
self,
# for images
src: Tensor,
pos: Tensor,
spatial_shapes: Tensor,
level_start_index: Tensor,
valid_ratios: Tensor,
key_padding_mask: Tensor,
# for texts
memory_text: Tensor = None,
text_attention_mask: Tensor = None,
pos_text: Tensor = None,
text_self_attention_masks: Tensor = None,
position_ids: Tensor = None,
):
"""
Input:
- src: [bs, sum(hi*wi), 256]
- pos: pos embed for src. [bs, sum(hi*wi), 256]
- spatial_shapes: h,w of each level [num_level, 2]
- level_start_index: [num_level] start point of level in sum(hi*wi).
- valid_ratios: [bs, num_level, 2]
- key_padding_mask: [bs, sum(hi*wi)]
- memory_text: bs, n_text, 256
- text_attention_mask: bs, n_text
False for no padding; True for padding
- pos_text: bs, n_text, 256
- position_ids: bs, n_text
Intermedia:
- reference_points: [bs, sum(hi*wi), num_level, 2]
Outpus:
- output: [bs, sum(hi*wi), 256]
"""
output = src
# preparation and reshape
if self.num_layers > 0:
reference_points = self.get_reference_points(
spatial_shapes, valid_ratios, device=src.device
)
if self.text_layers:
# generate pos_text
bs, n_text, text_dim = memory_text.shape
if pos_text is None and position_ids is None:
pos_text = (
torch.arange(n_text, device=memory_text.device)
.float()
.unsqueeze(0)
.unsqueeze(-1)
.repeat(bs, 1, 1)
)
pos_text = get_sine_pos_embed(
pos_text, num_pos_feats=256, exchange_xy=False
)
if position_ids is not None:
pos_text = get_sine_pos_embed(
position_ids[..., None], num_pos_feats=256, exchange_xy=False
)
# main process
for layer_id, layer in enumerate(self.layers):
# if output.isnan().any() or memory_text.isnan().any():
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
# import ipdb; ipdb.set_trace()
if self.fusion_layers:
if self.use_checkpoint:
output, memory_text = checkpoint.checkpoint(
self.fusion_layers[layer_id],
output,
memory_text,
key_padding_mask,
text_attention_mask,
)
else:
output, memory_text = self.fusion_layers[layer_id](
v=output,
l=memory_text,
attention_mask_v=key_padding_mask,
attention_mask_l=text_attention_mask,
)
if self.text_layers:
memory_text = self.text_layers[layer_id](
src=memory_text.transpose(0, 1),
src_mask=~text_self_attention_masks, # note we use ~ for mask here
src_key_padding_mask=text_attention_mask,
pos=(pos_text.transpose(0, 1) if pos_text is not None else None),
).transpose(0, 1)
# main process
if self.use_transformer_ckpt:
output = checkpoint.checkpoint(
layer,
output,
pos,
reference_points,
spatial_shapes,
level_start_index,
key_padding_mask,
)
else:
output = layer(
src=output,
pos=pos,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
key_padding_mask=key_padding_mask,
)
return output, memory_text
class TransformerDecoder(nn.Module):
def __init__(
self,
decoder_layer,
num_layers,
norm=None,
return_intermediate=False,
d_model=256,
query_dim=4,
num_feature_levels=1,
):
super().__init__()
if num_layers > 0:
self.layers = _get_clones(decoder_layer, num_layers)
else:
self.layers = []
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
assert return_intermediate, "support return_intermediate only"
self.query_dim = query_dim
assert query_dim in [2, 4], "query_dim should be 2/4 but {}".format(query_dim)
self.num_feature_levels = num_feature_levels
self.ref_point_head = MLP(query_dim // 2 * d_model, d_model, d_model, 2)
self.query_pos_sine_scale = None
self.query_scale = None
self.bbox_embed = None
self.class_embed = None
self.d_model = d_model
self.ref_anchor_head = None
def forward(
self,
tgt,
memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
refpoints_unsigmoid: Optional[Tensor] = None, # num_queries, bs, 2
# for memory
level_start_index: Optional[Tensor] = None, # num_levels
spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
valid_ratios: Optional[Tensor] = None,
# for text
memory_text: Optional[Tensor] = None,
text_attention_mask: Optional[Tensor] = None,
):
"""
Input:
- tgt: nq, bs, d_model
- memory: hw, bs, d_model
- pos: hw, bs, d_model
- refpoints_unsigmoid: nq, bs, 2/4
- valid_ratios/spatial_shapes: bs, nlevel, 2
"""
output = tgt
intermediate = []
reference_points = refpoints_unsigmoid.sigmoid()
ref_points = [reference_points]
for layer_id, layer in enumerate(self.layers):
if reference_points.shape[-1] == 4:
reference_points_input = (
reference_points[:, :, None]
* torch.cat([valid_ratios, valid_ratios], -1)[None, :]
) # nq, bs, nlevel, 4
else:
assert reference_points.shape[-1] == 2
reference_points_input = (
reference_points[:, :, None] * valid_ratios[None, :]
)
query_sine_embed = gen_sineembed_for_position(
reference_points_input[:, :, 0, :]
) # nq, bs, 256*2
# conditional query
raw_query_pos = self.ref_point_head(query_sine_embed) # nq, bs, 256
pos_scale = self.query_scale(output) if self.query_scale is not None else 1
query_pos = pos_scale * raw_query_pos
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
# if query_pos.isnan().any() | query_pos.isinf().any():
# import ipdb; ipdb.set_trace()
# main process
output = layer(
tgt=output,
tgt_query_pos=query_pos,
tgt_query_sine_embed=query_sine_embed,
tgt_key_padding_mask=tgt_key_padding_mask,
tgt_reference_points=reference_points_input,
memory_text=memory_text,
text_attention_mask=text_attention_mask,
memory=memory,
memory_key_padding_mask=memory_key_padding_mask,
memory_level_start_index=level_start_index,
memory_spatial_shapes=spatial_shapes,
memory_pos=pos,
self_attn_mask=tgt_mask,
cross_attn_mask=memory_mask,
)
if output.isnan().any() | output.isinf().any():
print(f"output layer_id {layer_id} is nan")
try:
num_nan = output.isnan().sum().item()
num_inf = output.isinf().sum().item()
print(f"num_nan {num_nan}, num_inf {num_inf}")
except Exception as e:
print(e)
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
# import ipdb; ipdb.set_trace()
# iter update
if self.bbox_embed is not None:
# box_holder = self.bbox_embed(output)
# box_holder[..., :self.query_dim] += inverse_sigmoid(reference_points)
# new_reference_points = box_holder[..., :self.query_dim].sigmoid()
reference_before_sigmoid = inverse_sigmoid(reference_points)
delta_unsig = self.bbox_embed[layer_id](output)
outputs_unsig = delta_unsig + reference_before_sigmoid
new_reference_points = outputs_unsig.sigmoid()
reference_points = new_reference_points.detach()
# if layer_id != self.num_layers - 1:
ref_points.append(new_reference_points)
intermediate.append(self.norm(output))
# import pdb;pdb.set_trace()
return [
[itm_out.transpose(0, 1) for itm_out in intermediate],
[itm_refpoint.transpose(0, 1) for itm_refpoint in ref_points],
]
class DeformableTransformerEncoderLayer(nn.Module):
def __init__(
self,
d_model=256,
d_ffn=1024,
dropout=0.1,
activation="relu",
n_levels=4,
n_heads=8,
n_points=4,
):
super().__init__()
# self attention
self.self_attn = MSDeformAttn(
embed_dim=d_model,
num_levels=n_levels,
num_heads=n_heads,
num_points=n_points,
batch_first=True,
)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
# ffn
self.linear1 = nn.Linear(d_model, d_ffn)
self.activation = _get_activation_fn(activation, d_model=d_ffn)
self.dropout2 = nn.Dropout(dropout)
self.linear2 = nn.Linear(d_ffn, d_model)
self.dropout3 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
@staticmethod
def with_pos_embed(tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, src):
src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
src = src + self.dropout3(src2)
src = self.norm2(src)
return src
def forward(
self,
src,
pos,
reference_points,
spatial_shapes,
level_start_index,
key_padding_mask=None,
):
# self attention
# import ipdb; ipdb.set_trace()
src2 = self.self_attn(
query=self.with_pos_embed(src, pos),
reference_points=reference_points,
value=src,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
key_padding_mask=key_padding_mask,
)
src = src + self.dropout1(src2)
src = self.norm1(src)
# ffn
src = self.forward_ffn(src)
return src
class DeformableTransformerDecoderLayer(nn.Module):
def __init__(
self,
d_model=256,
d_ffn=1024,
dropout=0.1,
activation="relu",
n_levels=4,
n_heads=8,
n_points=4,
use_text_feat_guide=False,
use_text_cross_attention=False,
):
super().__init__()
# cross attention
self.cross_attn = MSDeformAttn(
embed_dim=d_model,
num_levels=n_levels,
num_heads=n_heads,
num_points=n_points,
batch_first=True,
)
self.dropout1 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
self.norm1 = nn.LayerNorm(d_model)
# cross attention text
if use_text_cross_attention:
self.ca_text = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
self.catext_dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
self.catext_norm = nn.LayerNorm(d_model)
# self attention
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
self.dropout2 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
self.norm2 = nn.LayerNorm(d_model)
# ffn
self.linear1 = nn.Linear(d_model, d_ffn)
self.activation = _get_activation_fn(activation, d_model=d_ffn, batch_dim=1)
self.dropout3 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
self.linear2 = nn.Linear(d_ffn, d_model)
self.dropout4 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
self.norm3 = nn.LayerNorm(d_model)
self.key_aware_proj = None
self.use_text_feat_guide = use_text_feat_guide
assert not use_text_feat_guide
self.use_text_cross_attention = use_text_cross_attention
def rm_self_attn_modules(self):
self.self_attn = None
self.dropout2 = None
self.norm2 = None
@staticmethod
def with_pos_embed(tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, tgt):
with torch.cuda.amp.autocast(enabled=False):
tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout4(tgt2)
tgt = self.norm3(tgt)
return tgt
def forward(
self,
# for tgt
tgt: Optional[Tensor], # nq, bs, d_model
tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos))
tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos)
tgt_key_padding_mask: Optional[Tensor] = None,
tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4
memory_text: Optional[Tensor] = None, # bs, num_token, d_model
text_attention_mask: Optional[Tensor] = None, # bs, num_token
# for memory
memory: Optional[Tensor] = None, # hw, bs, d_model
memory_key_padding_mask: Optional[Tensor] = None,
memory_level_start_index: Optional[Tensor] = None, # num_levels
memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
memory_pos: Optional[Tensor] = None, # pos for memory
# sa
self_attn_mask: Optional[Tensor] = None, # mask used for self-attention
cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention
):
"""
Input:
- tgt/tgt_query_pos: nq, bs, d_model
-
"""
assert cross_attn_mask is None
# self attention
if self.self_attn is not None:
# import ipdb; ipdb.set_trace()
q = k = self.with_pos_embed(tgt, tgt_query_pos)
tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0]
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
if self.use_text_cross_attention:
tgt2 = self.ca_text(
self.with_pos_embed(tgt, tgt_query_pos),
memory_text.transpose(0, 1),
memory_text.transpose(0, 1),
key_padding_mask=text_attention_mask,
)[0]
tgt = tgt + self.catext_dropout(tgt2)
tgt = self.catext_norm(tgt)
tgt2 = self.cross_attn(
query=self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1),
reference_points=tgt_reference_points.transpose(0, 1).contiguous(),
value=memory.transpose(0, 1),
spatial_shapes=memory_spatial_shapes,
level_start_index=memory_level_start_index,
key_padding_mask=memory_key_padding_mask,
).transpose(0, 1)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
# ffn
tgt = self.forward_ffn(tgt)
return tgt
def build_transformer(args):
return Transformer(
d_model=args.hidden_dim,
dropout=args.dropout,
nhead=args.nheads,
num_queries=args.num_queries,
dim_feedforward=args.dim_feedforward,
num_encoder_layers=args.enc_layers,
num_decoder_layers=args.dec_layers,
normalize_before=args.pre_norm,
return_intermediate_dec=True,
query_dim=args.query_dim,
activation=args.transformer_activation,
num_patterns=args.num_patterns,
num_feature_levels=args.num_feature_levels,
enc_n_points=args.enc_n_points,
dec_n_points=args.dec_n_points,
learnable_tgt_init=True,
# two stage
two_stage_type=args.two_stage_type, # ['no', 'standard', 'early']
embed_init_tgt=args.embed_init_tgt,
use_text_enhancer=args.use_text_enhancer,
use_fusion_layer=args.use_fusion_layer,
use_checkpoint=args.use_checkpoint,
use_transformer_ckpt=args.use_transformer_ckpt,
use_text_cross_attention=args.use_text_cross_attention,
text_dropout=args.text_dropout,
fusion_dropout=args.fusion_dropout,
fusion_droppath=args.fusion_droppath,
)