|
|
|
""" |
|
Misc functions, including distributed helpers. |
|
|
|
Mostly copy-paste from torchvision references. |
|
""" |
|
import os |
|
import random |
|
import subprocess |
|
import time |
|
from collections import OrderedDict, defaultdict, deque |
|
import datetime |
|
import pickle |
|
from typing import Optional, List |
|
|
|
import json, time |
|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
from torch import Tensor |
|
|
|
import colorsys |
|
|
|
|
|
import torchvision |
|
__torchvision_need_compat_flag = float(torchvision.__version__.split('.')[1]) < 7 |
|
if __torchvision_need_compat_flag: |
|
from torchvision.ops import _new_empty_tensor |
|
from torchvision.ops.misc import _output_size |
|
|
|
|
|
class SmoothedValue(object): |
|
"""Track a series of values and provide access to smoothed values over a |
|
window or the global series average. |
|
""" |
|
|
|
def __init__(self, window_size=20, fmt=None): |
|
if fmt is None: |
|
fmt = "{median:.4f} ({global_avg:.4f})" |
|
self.deque = deque(maxlen=window_size) |
|
self.total = 0.0 |
|
self.count = 0 |
|
self.fmt = fmt |
|
|
|
def update(self, value, n=1): |
|
self.deque.append(value) |
|
self.count += n |
|
self.total += value * n |
|
|
|
def synchronize_between_processes(self): |
|
""" |
|
Warning: does not synchronize the deque! |
|
""" |
|
if not is_dist_avail_and_initialized(): |
|
return |
|
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') |
|
dist.barrier() |
|
dist.all_reduce(t) |
|
t = t.tolist() |
|
self.count = int(t[0]) |
|
self.total = t[1] |
|
|
|
@property |
|
def median(self): |
|
d = torch.tensor(list(self.deque)) |
|
if d.shape[0] == 0: |
|
return 0 |
|
return d.median().item() |
|
|
|
@property |
|
def avg(self): |
|
d = torch.tensor(list(self.deque), dtype=torch.float32) |
|
return d.mean().item() |
|
|
|
@property |
|
def global_avg(self): |
|
return self.total / self.count |
|
|
|
@property |
|
def max(self): |
|
return max(self.deque) |
|
|
|
@property |
|
def value(self): |
|
return self.deque[-1] |
|
|
|
def __str__(self): |
|
return self.fmt.format( |
|
median=self.median, |
|
avg=self.avg, |
|
global_avg=self.global_avg, |
|
max=self.max, |
|
value=self.value) |
|
|
|
|
|
def all_gather(data): |
|
""" |
|
Run all_gather on arbitrary picklable data (not necessarily tensors) |
|
Args: |
|
data: any picklable object |
|
Returns: |
|
list[data]: list of data gathered from each rank |
|
""" |
|
world_size = get_world_size() |
|
if world_size == 1: |
|
return [data] |
|
|
|
|
|
buffer = pickle.dumps(data) |
|
storage = torch.ByteStorage.from_buffer(buffer) |
|
tensor = torch.ByteTensor(storage).to("cuda") |
|
|
|
|
|
local_size = torch.tensor([tensor.numel()], device="cuda") |
|
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] |
|
dist.all_gather(size_list, local_size) |
|
size_list = [int(size.item()) for size in size_list] |
|
max_size = max(size_list) |
|
|
|
|
|
|
|
|
|
tensor_list = [] |
|
for _ in size_list: |
|
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) |
|
if local_size != max_size: |
|
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") |
|
tensor = torch.cat((tensor, padding), dim=0) |
|
dist.all_gather(tensor_list, tensor) |
|
|
|
data_list = [] |
|
for size, tensor in zip(size_list, tensor_list): |
|
buffer = tensor.cpu().numpy().tobytes()[:size] |
|
data_list.append(pickle.loads(buffer)) |
|
|
|
return data_list |
|
|
|
|
|
def reduce_dict(input_dict, average=True): |
|
""" |
|
Args: |
|
input_dict (dict): all the values will be reduced |
|
average (bool): whether to do average or sum |
|
Reduce the values in the dictionary from all processes so that all processes |
|
have the averaged results. Returns a dict with the same fields as |
|
input_dict, after reduction. |
|
""" |
|
world_size = get_world_size() |
|
if world_size < 2: |
|
return input_dict |
|
with torch.no_grad(): |
|
names = [] |
|
values = [] |
|
|
|
for k in sorted(input_dict.keys()): |
|
names.append(k) |
|
values.append(input_dict[k]) |
|
values = torch.stack(values, dim=0) |
|
dist.all_reduce(values) |
|
if average: |
|
values /= world_size |
|
reduced_dict = {k: v for k, v in zip(names, values)} |
|
return reduced_dict |
|
|
|
|
|
class MetricLogger(object): |
|
def __init__(self, delimiter="\t"): |
|
self.meters = defaultdict(SmoothedValue) |
|
self.delimiter = delimiter |
|
|
|
def update(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.meters[k].update(v) |
|
|
|
def __getattr__(self, attr): |
|
if attr in self.meters: |
|
return self.meters[attr] |
|
if attr in self.__dict__: |
|
return self.__dict__[attr] |
|
raise AttributeError("'{}' object has no attribute '{}'".format( |
|
type(self).__name__, attr)) |
|
|
|
def __str__(self): |
|
loss_str = [] |
|
for name, meter in self.meters.items(): |
|
|
|
|
|
if meter.count > 0: |
|
loss_str.append( |
|
"{}: {}".format(name, str(meter)) |
|
) |
|
return self.delimiter.join(loss_str) |
|
|
|
def synchronize_between_processes(self): |
|
for meter in self.meters.values(): |
|
meter.synchronize_between_processes() |
|
|
|
def add_meter(self, name, meter): |
|
self.meters[name] = meter |
|
|
|
def log_every(self, iterable, print_freq, header=None, logger=None): |
|
if logger is None: |
|
print_func = print |
|
else: |
|
print_func = logger.info |
|
|
|
i = 0 |
|
if not header: |
|
header = '' |
|
start_time = time.time() |
|
end = time.time() |
|
iter_time = SmoothedValue(fmt='{avg:.4f}') |
|
data_time = SmoothedValue(fmt='{avg:.4f}') |
|
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' |
|
if torch.cuda.is_available(): |
|
log_msg = self.delimiter.join([ |
|
header, |
|
'[{0' + space_fmt + '}/{1}]', |
|
'eta: {eta}', |
|
'{meters}', |
|
'time: {time}', |
|
'data: {data}', |
|
'max mem: {memory:.0f}' |
|
]) |
|
else: |
|
log_msg = self.delimiter.join([ |
|
header, |
|
'[{0' + space_fmt + '}/{1}]', |
|
'eta: {eta}', |
|
'{meters}', |
|
'time: {time}', |
|
'data: {data}' |
|
]) |
|
MB = 1024.0 * 1024.0 |
|
for obj in iterable: |
|
data_time.update(time.time() - end) |
|
yield obj |
|
|
|
iter_time.update(time.time() - end) |
|
if i % print_freq == 0 or i == len(iterable) - 1: |
|
eta_seconds = iter_time.global_avg * (len(iterable) - i) |
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
if torch.cuda.is_available(): |
|
print_func(log_msg.format( |
|
i, len(iterable), eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time), |
|
memory=torch.cuda.max_memory_allocated() / MB)) |
|
else: |
|
print_func(log_msg.format( |
|
i, len(iterable), eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time))) |
|
i += 1 |
|
end = time.time() |
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print_func('{} Total time: {} ({:.4f} s / it)'.format( |
|
header, total_time_str, total_time / len(iterable))) |
|
|
|
|
|
def get_sha(): |
|
cwd = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
def _run(command): |
|
return subprocess.check_output(command, cwd=cwd).decode('ascii').strip() |
|
sha = 'N/A' |
|
diff = "clean" |
|
branch = 'N/A' |
|
try: |
|
sha = _run(['git', 'rev-parse', 'HEAD']) |
|
subprocess.check_output(['git', 'diff'], cwd=cwd) |
|
diff = _run(['git', 'diff-index', 'HEAD']) |
|
diff = "has uncommited changes" if diff else "clean" |
|
branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) |
|
except Exception: |
|
pass |
|
message = f"sha: {sha}, status: {diff}, branch: {branch}" |
|
return message |
|
|
|
|
|
def collate_fn(batch): |
|
|
|
batch = list(zip(*batch)) |
|
batch[0] = nested_tensor_from_tensor_list(batch[0]) |
|
return tuple(batch) |
|
|
|
|
|
def _max_by_axis(the_list): |
|
|
|
maxes = the_list[0] |
|
for sublist in the_list[1:]: |
|
for index, item in enumerate(sublist): |
|
maxes[index] = max(maxes[index], item) |
|
return maxes |
|
|
|
|
|
class NestedTensor(object): |
|
def __init__(self, tensors, mask: Optional[Tensor]): |
|
self.tensors = tensors |
|
self.mask = mask |
|
if mask == 'auto': |
|
self.mask = torch.zeros_like(tensors).to(tensors.device) |
|
if self.mask.dim() == 3: |
|
self.mask = self.mask.sum(0).to(bool) |
|
elif self.mask.dim() == 4: |
|
self.mask = self.mask.sum(1).to(bool) |
|
else: |
|
raise ValueError("tensors dim must be 3 or 4 but {}({})".format(self.tensors.dim(), self.tensors.shape)) |
|
|
|
def imgsize(self): |
|
res = [] |
|
for i in range(self.tensors.shape[0]): |
|
mask = self.mask[i] |
|
maxH = (~mask).sum(0).max() |
|
maxW = (~mask).sum(1).max() |
|
res.append(torch.Tensor([maxH, maxW])) |
|
return res |
|
|
|
def to(self, device): |
|
|
|
cast_tensor = self.tensors.to(device) |
|
mask = self.mask |
|
if mask is not None: |
|
assert mask is not None |
|
cast_mask = mask.to(device) |
|
else: |
|
cast_mask = None |
|
return NestedTensor(cast_tensor, cast_mask) |
|
|
|
def to_img_list_single(self, tensor, mask): |
|
assert tensor.dim() == 3, "dim of tensor should be 3 but {}".format(tensor.dim()) |
|
maxH = (~mask).sum(0).max() |
|
maxW = (~mask).sum(1).max() |
|
img = tensor[:, :maxH, :maxW] |
|
return img |
|
|
|
def to_img_list(self): |
|
"""remove the padding and convert to img list |
|
|
|
Returns: |
|
[type]: [description] |
|
""" |
|
if self.tensors.dim() == 3: |
|
return self.to_img_list_single(self.tensors, self.mask) |
|
else: |
|
res = [] |
|
for i in range(self.tensors.shape[0]): |
|
tensor_i = self.tensors[i] |
|
mask_i = self.mask[i] |
|
res.append(self.to_img_list_single(tensor_i, mask_i)) |
|
return res |
|
|
|
@property |
|
def device(self): |
|
return self.tensors.device |
|
|
|
def decompose(self): |
|
return self.tensors, self.mask |
|
|
|
def __repr__(self): |
|
return str(self.tensors) |
|
|
|
@property |
|
def shape(self): |
|
return { |
|
'tensors.shape': self.tensors.shape, |
|
'mask.shape': self.mask.shape |
|
} |
|
|
|
|
|
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): |
|
|
|
if tensor_list[0].ndim == 3: |
|
if torchvision._is_tracing(): |
|
|
|
|
|
return _onnx_nested_tensor_from_tensor_list(tensor_list) |
|
|
|
|
|
max_size = _max_by_axis([list(img.shape) for img in tensor_list]) |
|
|
|
batch_shape = [len(tensor_list)] + max_size |
|
b, c, h, w = batch_shape |
|
dtype = tensor_list[0].dtype |
|
device = tensor_list[0].device |
|
tensor = torch.zeros(batch_shape, dtype=dtype, device=device) |
|
mask = torch.ones((b, h, w), dtype=torch.bool, device=device) |
|
for img, pad_img, m in zip(tensor_list, tensor, mask): |
|
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) |
|
m[: img.shape[1], :img.shape[2]] = False |
|
else: |
|
raise ValueError('not supported') |
|
return NestedTensor(tensor, mask) |
|
|
|
|
|
|
|
|
|
@torch.jit.unused |
|
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: |
|
max_size = [] |
|
for i in range(tensor_list[0].dim()): |
|
max_size_i = torch.max(torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)).to(torch.int64) |
|
max_size.append(max_size_i) |
|
max_size = tuple(max_size) |
|
|
|
|
|
|
|
|
|
|
|
padded_imgs = [] |
|
padded_masks = [] |
|
for img in tensor_list: |
|
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] |
|
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) |
|
padded_imgs.append(padded_img) |
|
|
|
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) |
|
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) |
|
padded_masks.append(padded_mask.to(torch.bool)) |
|
|
|
tensor = torch.stack(padded_imgs) |
|
mask = torch.stack(padded_masks) |
|
|
|
return NestedTensor(tensor, mask=mask) |
|
|
|
|
|
def setup_for_distributed(is_master): |
|
""" |
|
This function disables printing when not in master process |
|
""" |
|
import builtins as __builtin__ |
|
builtin_print = __builtin__.print |
|
|
|
def print(*args, **kwargs): |
|
force = kwargs.pop('force', False) |
|
if is_master or force: |
|
builtin_print(*args, **kwargs) |
|
|
|
__builtin__.print = print |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
def save_on_master(*args, **kwargs): |
|
if is_main_process(): |
|
torch.save(*args, **kwargs) |
|
|
|
|
|
def init_distributed_mode(args): |
|
if 'WORLD_SIZE' in os.environ and os.environ['WORLD_SIZE'] != '': |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
local_world_size = int(os.environ['WORLD_SIZE']) |
|
args.world_size = args.world_size * local_world_size |
|
args.gpu = args.local_rank = int(os.environ['LOCAL_RANK']) |
|
args.rank = args.rank * local_world_size + args.local_rank |
|
print('world size: {}, rank: {}, local rank: {}'.format(args.world_size, args.rank, args.local_rank)) |
|
print(json.dumps(dict(os.environ), indent=2)) |
|
elif 'SLURM_PROCID' in os.environ: |
|
args.rank = int(os.environ['SLURM_PROCID']) |
|
args.gpu = args.local_rank = int(os.environ['SLURM_LOCALID']) |
|
args.world_size = int(os.environ['SLURM_NPROCS']) |
|
|
|
print('world size: {}, world rank: {}, local rank: {}, device_count: {}'.format(args.world_size, args.rank, args.local_rank, torch.cuda.device_count())) |
|
else: |
|
print('Not using distributed mode') |
|
args.distributed = False |
|
args.world_size = 1 |
|
args.rank = 0 |
|
args.local_rank = 0 |
|
return |
|
|
|
print("world_size:{} rank:{} local_rank:{}".format(args.world_size, args.rank, args.local_rank)) |
|
args.distributed = True |
|
torch.cuda.set_device(args.local_rank) |
|
args.dist_backend = 'nccl' |
|
print('| distributed init (rank {}): {}'.format(args.rank, args.dist_url), flush=True) |
|
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, |
|
world_size=args.world_size, rank=args.rank) |
|
print("Before torch.distributed.barrier()") |
|
torch.distributed.barrier() |
|
print("End torch.distributed.barrier()") |
|
setup_for_distributed(args.rank == 0) |
|
|
|
def setup_distributed(args): |
|
if 'WORLD_SIZE' in os.environ and os.environ['WORLD_SIZE'] != '': |
|
local_world_size = int(os.environ['WORLD_SIZE']) |
|
args.world_size = args.world_size * local_world_size |
|
args.gpu = args.local_rank = int(os.environ['LOCAL_RANK']) |
|
args.rank = args.rank * local_world_size + args.local_rank |
|
print('world size: {}, rank: {}, local rank: {}'.format(args.world_size, args.rank, args.local_rank)) |
|
print(json.dumps(dict(os.environ), indent=2)) |
|
elif 'SLURM_PROCID' in os.environ: |
|
args.rank = int(os.environ['SLURM_PROCID']) |
|
args.gpu = args.local_rank = int(os.environ['SLURM_LOCALID']) |
|
args.world_size = int(os.environ['SLURM_NTASKS']) |
|
node_list = os.environ["SLURM_NODELIST"] |
|
addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1") |
|
if "MASTER_PORT" not in os.environ: |
|
os.environ["MASTER_PORT"] = "23233" |
|
if "MASTER_ADDR" not in os.environ: |
|
os.environ["MASTER_ADDR"] = addr |
|
os.environ["WORLD_SIZE"] = str(args.world_size) |
|
os.environ["LOCAL_RANK"] = str(args.local_rank) |
|
os.environ["RANK"] = str(args.rank) |
|
print('world size: {}, world rank: {}, local rank: {}, device_count: {}'.format(args.world_size, args.rank, args.local_rank, torch.cuda.device_count())) |
|
else: |
|
print('Not using distributed mode') |
|
args.distributed = False |
|
args.world_size = 1 |
|
args.rank = 0 |
|
args.local_rank = 0 |
|
return |
|
|
|
args.distributed = True |
|
torch.cuda.set_device(args.local_rank) |
|
args.dist_backend = 'nccl' |
|
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, |
|
world_size=args.world_size, rank=args.rank) |
|
torch.distributed.barrier() |
|
print(f' == distributed init (rank {args.rank}) done.') |
|
|
|
setup_for_distributed(args.rank == 0) |
|
|
|
@torch.no_grad() |
|
def accuracy(output, target, topk=(1,)): |
|
"""Computes the precision@k for the specified values of k""" |
|
if target.numel() == 0: |
|
return [torch.zeros([], device=output.device)] |
|
maxk = max(topk) |
|
batch_size = target.size(0) |
|
|
|
_, pred = output.topk(maxk, 1, True, True) |
|
pred = pred.t() |
|
correct = pred.eq(target.view(1, -1).expand_as(pred)) |
|
|
|
res = [] |
|
for k in topk: |
|
correct_k = correct[:k].view(-1).float().sum(0) |
|
res.append(correct_k.mul_(100.0 / batch_size)) |
|
return res |
|
|
|
|
|
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): |
|
|
|
""" |
|
Equivalent to nn.functional.interpolate, but with support for empty batch sizes. |
|
This will eventually be supported natively by PyTorch, and this |
|
class can go away. |
|
""" |
|
if __torchvision_need_compat_flag < 0.7: |
|
if input.numel() > 0: |
|
return torch.nn.functional.interpolate( |
|
input, size, scale_factor, mode, align_corners |
|
) |
|
|
|
output_shape = _output_size(2, input, size, scale_factor) |
|
output_shape = list(input.shape[:-2]) + list(output_shape) |
|
return _new_empty_tensor(input, output_shape) |
|
else: |
|
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners) |
|
|
|
|
|
|
|
class color_sys(): |
|
def __init__(self, num_colors) -> None: |
|
self.num_colors = num_colors |
|
colors=[] |
|
for i in np.arange(0., 360., 360. / num_colors): |
|
hue = i/360. |
|
lightness = (50 + np.random.rand() * 10)/100. |
|
saturation = (90 + np.random.rand() * 10)/100. |
|
colors.append(tuple([int(j*255) for j in colorsys.hls_to_rgb(hue, lightness, saturation)])) |
|
self.colors = colors |
|
|
|
def __call__(self, idx): |
|
return self.colors[idx] |
|
|
|
def inverse_sigmoid(x, eps=1e-3): |
|
x = x.clamp(min=0, max=1) |
|
x1 = x.clamp(min=eps) |
|
x2 = (1 - x).clamp(min=eps) |
|
return torch.log(x1/x2) |
|
|
|
def clean_state_dict(state_dict): |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
if k[:7] == 'module.': |
|
k = k[7:] |
|
new_state_dict[k] = v |
|
return new_state_dict |