printing devices
Browse files
app.py
CHANGED
|
@@ -231,10 +231,15 @@ def count(image, text, prompts, state, device):
|
|
| 231 |
input_image, _ = transform(image, {"exemplars": torch.tensor([])})
|
| 232 |
input_image = input_image.unsqueeze(0).to(device)
|
| 233 |
exemplars = get_box_inputs(prompts["points"])
|
| 234 |
-
|
| 235 |
input_image_exemplars, exemplars = transform(prompts["image"], {"exemplars": torch.tensor(exemplars)})
|
| 236 |
input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
|
| 237 |
exemplars = [exemplars["exemplars"].to(device)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
with torch.no_grad():
|
| 240 |
model_output = model(
|
|
@@ -316,7 +321,7 @@ def count_main(image, text, prompts, device):
|
|
| 316 |
input_image, _ = transform(image, {"exemplars": torch.tensor([])})
|
| 317 |
input_image = input_image.unsqueeze(0).to(device)
|
| 318 |
exemplars = get_box_inputs(prompts["points"])
|
| 319 |
-
|
| 320 |
input_image_exemplars, exemplars = transform(prompts["image"], {"exemplars": torch.tensor(exemplars)})
|
| 321 |
input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
|
| 322 |
exemplars = [exemplars["exemplars"].to(device)]
|
|
|
|
| 231 |
input_image, _ = transform(image, {"exemplars": torch.tensor([])})
|
| 232 |
input_image = input_image.unsqueeze(0).to(device)
|
| 233 |
exemplars = get_box_inputs(prompts["points"])
|
| 234 |
+
|
| 235 |
input_image_exemplars, exemplars = transform(prompts["image"], {"exemplars": torch.tensor(exemplars)})
|
| 236 |
input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
|
| 237 |
exemplars = [exemplars["exemplars"].to(device)]
|
| 238 |
+
|
| 239 |
+
print("model device: " + str(model.device))
|
| 240 |
+
print("input image device: " + str(input_image.device))
|
| 241 |
+
print("input image exemplars device: " + str(input_image_exemplars.device))
|
| 242 |
+
print("exemplars device: " + str(exemplars[0].device))
|
| 243 |
|
| 244 |
with torch.no_grad():
|
| 245 |
model_output = model(
|
|
|
|
| 321 |
input_image, _ = transform(image, {"exemplars": torch.tensor([])})
|
| 322 |
input_image = input_image.unsqueeze(0).to(device)
|
| 323 |
exemplars = get_box_inputs(prompts["points"])
|
| 324 |
+
|
| 325 |
input_image_exemplars, exemplars = transform(prompts["image"], {"exemplars": torch.tensor(exemplars)})
|
| 326 |
input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
|
| 327 |
exemplars = [exemplars["exemplars"].to(device)]
|