Spaces:
Running
on
A10G
Running
on
A10G
File size: 5,238 Bytes
d0fef57 d561a66 d0fef57 e6ac7d7 d0fef57 e6ac7d7 d0fef57 e6ac7d7 d0fef57 e6ac7d7 d0fef57 e6ac7d7 d0fef57 e6ac7d7 d0fef57 082c35d d0fef57 e6ac7d7 d0fef57 e6ac7d7 d0fef57 e6ac7d7 d0fef57 e6ac7d7 d0fef57 e6ac7d7 d0fef57 e6ac7d7 e836c0d e03007b e6ac7d7 e03007b e6ac7d7 e03007b e6ac7d7 d561a66 e03007b e6ac7d7 d0fef57 e6ac7d7 d0fef57 e6ac7d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import os
import cv2
import gradio as gr
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from realesrgan.utils import RealESRGANer
# os.system("pip freeze")
# os.system(
# "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights")
# os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P ./weights")
# os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P ./weights")
torch.hub.download_url_to_file(
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
'lincoln.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
'AI-generate.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
'Blake_Lively.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
'10045.jpg')
# determine models according to model names
# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
netscale = 4
model_path = os.path.join('weights', 'realesr-general-x4v3.pth')
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=netscale, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
# Use GFPGAN for face enhancement
face_enhancer_v3 = GFPGANer(
model_path='weights/GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
face_enhancer_v2 = GFPGANer(
model_path='weights/GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
os.makedirs('output', exist_ok=True)
def inference(img, version, scale):
print(torch.cuda.is_available())
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
else:
img_mode = None
h, w = img.shape[0:2]
if h < 400:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
if version == 'v1.2':
face_enhancer = face_enhancer_v2
else:
face_enhancer = face_enhancer_v3
try:
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
except RuntimeError as error:
print('Error', error)
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
else:
extension = 'png'
if scale != 2:
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
h, w = img.shape[0:2]
output = cv2.resize(output, (int(w * scale /2), int(h * scale/2)), interpolation=interpolation)
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
else:
extension = 'jpg'
save_path = f'output/out.{extension}'
cv2.imwrite(save_path, output)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
return output, save_path
title = "GFPGAN: Practical Face Restoration Algorithm"
description = r"""
Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>. <br>
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
It can be used to: <br>
- Upsample/Restore your **old photos**
- Upsample/Improve **AI-generated faces**
To use it, simply upload your image. Please click submit only once.
"""
article = r"""<p style='text-align: center'><a href='https://arxiv.org/abs/2101.04061' target='_blank'>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</a> | <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
[![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
"""
gr.Interface(
inference,
[gr.inputs.Image(type="filepath", label="Input"),
gr.inputs.Radio(['v1.2','v1.3'], type="value", default='v1.3', label='GFPGAN version'),
gr.inputs.Number(label="Rescaling factor", default=2)],
[gr.outputs.Image(type="numpy", label="Output (The whole image)"),
gr.outputs.File(label="Download the output image")],
title=title,
description=description,
article=article,
examples=[['AI-generate.jpg', 'v1.3', 2], ['lincoln.png', 'v1.3',2], ['Blake_Lively.jpg', 'v1.3',2], ['10045.jpg', 'v1.3',2]).launch()
|