|
from configs.model_config import * |
|
from chains.local_doc_qa import LocalDocQA |
|
import os |
|
import nltk |
|
from models.loader.args import parser |
|
import models.shared as shared |
|
from models.loader import LoaderCheckPoint |
|
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path |
|
|
|
|
|
REPLY_WITH_SOURCE = True |
|
|
|
|
|
def main(): |
|
|
|
llm_model_ins = shared.loaderLLM() |
|
llm_model_ins.history_len = LLM_HISTORY_LEN |
|
|
|
local_doc_qa = LocalDocQA() |
|
local_doc_qa.init_cfg(llm_model=llm_model_ins, |
|
embedding_model=EMBEDDING_MODEL, |
|
embedding_device=EMBEDDING_DEVICE, |
|
top_k=VECTOR_SEARCH_TOP_K) |
|
vs_path = None |
|
while not vs_path: |
|
filepath = input("Input your local knowledge file path 请输入本地知识文件路径:") |
|
|
|
if not filepath: |
|
continue |
|
vs_path, _ = local_doc_qa.init_knowledge_vector_store(filepath) |
|
history = [] |
|
while True: |
|
query = input("Input your question 请输入问题:") |
|
last_print_len = 0 |
|
for resp, history in local_doc_qa.get_knowledge_based_answer(query=query, |
|
vs_path=vs_path, |
|
chat_history=history, |
|
streaming=STREAMING): |
|
if STREAMING: |
|
print(resp["result"][last_print_len:], end="", flush=True) |
|
last_print_len = len(resp["result"]) |
|
else: |
|
print(resp["result"]) |
|
if REPLY_WITH_SOURCE: |
|
source_text = [f"""出处 [{inum + 1}] {os.path.split(doc.metadata['source'])[-1]}:\n\n{doc.page_content}\n\n""" |
|
|
|
for inum, doc in |
|
enumerate(resp["source_documents"])] |
|
print("\n\n" + "\n\n".join(source_text)) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
args = None |
|
args = parser.parse_args() |
|
args_dict = vars(args) |
|
shared.loaderCheckPoint = LoaderCheckPoint(args_dict) |
|
main() |
|
|