import torch.cuda import torch.backends import os import logging import uuid LOG_FORMAT = "%(levelname) -5s %(asctime)s" "-1d: %(message)s" logger = logging.getLogger() logger.setLevel(logging.INFO) logging.basicConfig(format=LOG_FORMAT) # 在以下字典中修改属性值,以指定本地embedding模型存储位置 # 如将 "text2vec": "GanymedeNil/text2vec-large-chinese" 修改为 "text2vec": "User/Downloads/text2vec-large-chinese" # 此处请写绝对路径 C:\Program Files\Git\your_path\text2vec C:/Users/Administrator/text2vec-large-chinese embedding_model_dict = { "ernie-tiny": "nghuyong/ernie-3.0-nano-zh", "ernie-base": "nghuyong/ernie-3.0-base-zh", "text2vec-base": "shibing624/text2vec-base-chinese", "text2vec": " C:/Users/Administrator/text2vec-large-chinese", "m3e-small": "moka-ai/m3e-small", "m3e-base": "moka-ai/m3e-base", } # Embedding model name EMBEDDING_MODEL = "text2vec" # Embedding running device EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" # supported LLM models # llm_model_dict 处理了loader的一些预设行为,如加载位置,模型名称,模型处理器实例 # 在以下字典中修改属性值,以指定本地 LLM 模型存储位置 # 如将 "chatglm-6b" 的 "local_model_path" 由 None 修改为 "User/Downloads/chatglm-6b" # 此处请写绝对路径 llm_model_dict = { "chatglm-6b-int4-qe": { "name": "chatglm-6b-int4-qe", "pretrained_model_name": "THUDM/chatglm-6b-int4-qe", "local_model_path": None, "provides": "ChatGLM" }, "chatglm-6b-int4": { "name": "chatglm-6b-int4", "pretrained_model_name": "THUDM/chatglm-6b-int4", "local_model_path": None, "provides": "ChatGLM" }, "chatglm-6b-int8": { "name": "chatglm-6b-int8", "pretrained_model_name": "THUDM/chatglm-6b-int8", "local_model_path": None, "provides": "ChatGLM" }, # "chatglm-6b": { # "name": "chatglm-6b", # "pretrained_model_name": "THUDM/chatglm-6b", # "local_model_path": None, # "provides": "ChatGLM" # }, "chatglm-6b": { "name": "chatglm-6b", "pretrained_model_name": "chatglm-6b", "local_model_path": "C:/Users/Administrator/VisualGLM-6B/model", "provides": "ChatGLM" }, "chatglm2-6b": { "name": "chatglm2-6b", "pretrained_model_name": "chatglm2-6b", "local_model_path": "C:/Users/Administrator/ChatGLM2-6B/model", "provides": "ChatGLM" }, "chatyuan": { "name": "chatyuan", "pretrained_model_name": "ClueAI/ChatYuan-large-v2", "local_model_path": None, "provides": None }, "moss": { "name": "moss", "pretrained_model_name": "fnlp/moss-moon-003-sft", "local_model_path": None, "provides": "MOSSLLM" }, "vicuna-13b-hf": { "name": "vicuna-13b-hf", "pretrained_model_name": "vicuna-13b-hf", "local_model_path": None, "provides": "LLamaLLM" }, # 通过 fastchat 调用的模型请参考如下格式 "fastchat-chatglm-6b": { "name": "chatglm-6b", # "name"修改为fastchat服务中的"model_name" "pretrained_model_name": "chatglm-6b", "local_model_path": None, "provides": "FastChatOpenAILLM", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLM" "api_base_url": "http://localhost:8000/v1" # "name"修改为fastchat服务中的"api_base_url" }, "fastchat-chatglm2-6b": { "name": "chatglm2-6b", # "name"修改为fastchat服务中的"model_name" "pretrained_model_name": "chatglm2-6b", "local_model_path":None, "provides": "FastChatOpenAILLM", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLM" "api_base_url": "http://localhost:8000/v1" # "name"修改为fastchat服务中的"api_base_url" }, # 通过 fastchat 调用的模型请参考如下格式 "fastchat-vicuna-13b-hf": { "name": "vicuna-13b-hf", # "name"修改为fastchat服务中的"model_name" "pretrained_model_name": "vicuna-13b-hf", "local_model_path": None, "provides": "FastChatOpenAILLM", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLM" "api_base_url": "http://localhost:8000/v1" # "name"修改为fastchat服务中的"api_base_url" }, } # LLM 名称 # LLM_MODEL = "chatglm2-6b" LLM_MODEL = "chatglm2-6b" # 量化加载8bit 模型 LOAD_IN_8BIT = False # Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. BF16 = False # 本地lora存放的位置 LORA_DIR = "loras/" # LLM lora path,默认为空,如果有请直接指定文件夹路径 LLM_LORA_PATH = "" USE_LORA = True if LLM_LORA_PATH else False # LLM streaming reponse STREAMING = True # Use p-tuning-v2 PrefixEncoder USE_PTUNING_V2 = False # LLM running device LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" # 知识库默认存储路径 KB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "knowledge_base") # 基于上下文的prompt模版,请务必保留"{question}"和"{context}" PROMPT_TEMPLATE = """已知信息: {context} 根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 问题是:{question}""" # 缓存知识库数量 CACHED_VS_NUM = 1 # 文本分句长度 SENTENCE_SIZE = 100 # 匹配后单段上下文长度 CHUNK_SIZE = 250 # 传入LLM的历史记录长度 LLM_HISTORY_LEN = 3 # 知识库检索时返回的匹配内容条数 VECTOR_SEARCH_TOP_K = 5 # 知识检索内容相关度 Score, 数值范围约为0-1100,如果为0,则不生效,经测试设置为小于500时,匹配结果更精准 VECTOR_SEARCH_SCORE_THRESHOLD = 500 NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data") FLAG_USER_NAME = uuid.uuid4().hex logger.info(f""" loading model config llm device: {LLM_DEVICE} embedding device: {EMBEDDING_DEVICE} dir: {os.path.dirname(os.path.dirname(__file__))} flagging username: {FLAG_USER_NAME} """) # 是否开启跨域,默认为False,如果需要开启,请设置为True # is open cross domain OPEN_CROSS_DOMAIN = False # Bing 搜索必备变量 # 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search # 具体申请方式请见 # https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource # 使用python创建bing api 搜索实例详见: # https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search" # 注意不是bing Webmaster Tools的api key, # 此外,如果是在服务器上,报Failed to establish a new connection: [Errno 110] Connection timed out # 是因为服务器加了防火墙,需要联系管理员加白名单,如果公司的服务器的话,就别想了GG BING_SUBSCRIPTION_KEY = "" # 是否开启中文标题加强,以及标题增强的相关配置 # 通过增加标题判断,判断哪些文本为标题,并在metadata中进行标记; # 然后将文本与往上一级的标题进行拼合,实现文本信息的增强。 ZH_TITLE_ENHANCE = False