Spaces:
Running
Running
import gradio as gr | |
from gradio_client import Client, handle_file | |
def generate_video(input_image, prompt, negative_prompt, diffusion_step, height, width, scfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed): | |
client = Client("maxin-cn/Cinemo") | |
result = client.predict( | |
input_image=handle_file(input_image), | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
diffusion_step=diffusion_step, | |
height=height, | |
width=width, | |
scfg_scale=scfg_scale, | |
use_dctinit=use_dctinit, | |
dct_coefficients=dct_coefficients, | |
noise_level=noise_level, | |
motion_bucket_id=motion_bucket_id, | |
seed=seed, | |
api_name="/gen_video" | |
) | |
print("API response" , result) | |
video_path = result.get('video') # Extract the video file path from the API response | |
if video_path is None: | |
return "The API did not return a valid video. Please try again." | |
return video_path # Return the path to the video file | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type="filepath") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative Prompt") | |
with gr.Row(): | |
diffusion_step = gr.Slider(label="Sampling steps", minimum=1, maximum=100, value=50) | |
height = gr.Slider(label="Height", minimum=64, maximum=1024, value=320) | |
width = gr.Slider(label="Width", minimum=64, maximum=1024, value=512) | |
scfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7.5) | |
with gr.Row(): | |
use_dctinit = gr.Checkbox(label="Enable DCTInit", value=True) | |
dct_coefficients = gr.Slider(label="DCT Coefficients", minimum=0.0, maximum=1.0, value=0.23) | |
noise_level = gr.Slider(label="Noise Level", minimum=0, maximum=1000, value=985) | |
motion_bucket_id = gr.Slider(label="Motion Intensity", minimum=0, maximum=20, value=10) | |
seed = gr.Number(label="Seed", value=100) | |
video_output = gr.Video(label="Generated Video") | |
generate_button = gr.Button("Generate Video") | |
generate_button.click(generate_video, inputs=[input_image, prompt, negative_prompt, diffusion_step, height, width, scfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed], outputs=video_output) | |
demo.launch() | |