Testtrial1 / app.py
john
Update app.py
b3f3207
raw
history blame
1.71 kB
import os
import wget
import gradio as gr
from llama_cpp import Llama
import random
url = 'https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q2_K.bin'
filename = wget.download(url)
llm = Llama(model_path=filename, seed=random.randint(1, 2**31))
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.UploadButton([msg, chatbot]) # Replace gr.ClearButton with gr.UploadButton
# instruction = gr.Textbox(label="Instruction", placeholder="")
def user(user_message, history):
return gr.update(value="", interactive=True), history + [[user_message, None]]
def bot(history):
# instruction = history[-1][1] or ""
user_message = history[-1][0]
# token1 = llm.tokenize(b"### Instruction: ")
# token2 = llm.tokenize(instruction.encode())
token3 = llm.tokenize(b"### Input: ")
tokens3 = llm.tokenize(user_message.encode())
token4 = llm.tokenize(b"### Response:")
tokens = token3 + tokens3 + token4
history[-1][1] = ""
count = 0
output = ""
for token in llm.generate(tokens, top_k=50, top_p=0.73, temp=0.72, repeat_penalty=1.1):
text = llm.detokenize([token])
output += text.decode()
count += 1
if count >= 500 or (token == llm.token_eos()):
break
history[-1][1] += text.decode()
yield history
response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
demo.queue()
demo.launch(debug=True)