john commited on
Commit
dacf472
1 Parent(s): 41413cf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -148
app.py CHANGED
@@ -1,150 +1,44 @@
1
  import os
2
-
3
- import cv2
4
  import gradio as gr
5
- import torch
6
- from basicsr.archs.srvgg_arch import SRVGGNetCompact
7
- from gfpgan.utils import GFPGANer
8
- from realesrgan.utils import RealESRGANer
9
-
10
- os.system("pip freeze")
11
- # download weights
12
- if not os.path.exists('realesr-general-x4v3.pth'):
13
- os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
14
- if not os.path.exists('GFPGANv1.2.pth'):
15
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
16
- if not os.path.exists('GFPGANv1.3.pth'):
17
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
18
- if not os.path.exists('GFPGANv1.4.pth'):
19
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
20
- if not os.path.exists('RestoreFormer.pth'):
21
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
22
- if not os.path.exists('CodeFormer.pth'):
23
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
24
-
25
- torch.hub.download_url_to_file(
26
- 'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
27
- 'lincoln.jpg')
28
- torch.hub.download_url_to_file(
29
- 'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
30
- 'AI-generate.jpg')
31
- torch.hub.download_url_to_file(
32
- 'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
33
- 'Blake_Lively.jpg')
34
- torch.hub.download_url_to_file(
35
- 'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
36
- '10045.png')
37
-
38
- # background enhancer with RealESRGAN
39
- model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
40
- model_path = 'realesr-general-x4v3.pth'
41
- half = True if torch.cuda.is_available() else False
42
- upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
43
-
44
- os.makedirs('output', exist_ok=True)
45
-
46
-
47
- # def inference(img, version, scale, weight):
48
- def inference(img, version, scale):
49
- # weight /= 100
50
- print(img, version, scale)
51
- if scale > 4:
52
- scale = 4 # avoid too large scale value
53
- try:
54
- extension = os.path.splitext(os.path.basename(str(img)))[1]
55
- img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
56
- if len(img.shape) == 3 and img.shape[2] == 4:
57
- img_mode = 'RGBA'
58
- elif len(img.shape) == 2: # for gray inputs
59
- img_mode = None
60
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
61
- else:
62
- img_mode = None
63
-
64
- h, w = img.shape[0:2]
65
- if h > 3500 or w > 3500:
66
- print('too large size')
67
- return None, None
68
-
69
- if h < 300:
70
- img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
71
-
72
- if version == 'v1.2':
73
- face_enhancer = GFPGANer(
74
- model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
75
- elif version == 'v1.3':
76
- face_enhancer = GFPGANer(
77
- model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
78
- elif version == 'v1.4':
79
- face_enhancer = GFPGANer(
80
- model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
81
- elif version == 'RestoreFormer':
82
- face_enhancer = GFPGANer(
83
- model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
84
- # elif version == 'CodeFormer':
85
- # face_enhancer = GFPGANer(
86
- # model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
87
-
88
- try:
89
- # _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
90
- _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
91
- except RuntimeError as error:
92
- print('Error', error)
93
-
94
- try:
95
- if scale != 2:
96
- interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
97
- h, w = img.shape[0:2]
98
- output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
99
- except Exception as error:
100
- print('wrong scale input.', error)
101
- if img_mode == 'RGBA': # RGBA images should be saved in png format
102
- extension = 'png'
103
- else:
104
- extension = 'jpg'
105
- save_path = f'output/out.{extension}'
106
- cv2.imwrite(save_path, output)
107
-
108
- output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
109
- return output, save_path
110
- except Exception as error:
111
- print('global exception', error)
112
- return None, None
113
-
114
-
115
- title = "GFPGAN: Practical Face Restoration Algorithm"
116
- description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
117
- It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
118
- To use it, simply upload your image.<br>
119
- If GFPGAN is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends 😊
120
- """
121
- article = r"""
122
-
123
- [![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
124
- [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
125
- [![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)
126
-
127
- If you have any question, please email 📧 `xintao.wang@outlook.com` or `xintaowang@tencent.com`.
128
-
129
- <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
130
- <center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
131
- """
132
- demo = gr.Interface(
133
- inference, [
134
- gr.Image(type="filepath", label="Input"),
135
- # gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], type="value", value='v1.4', label='version'),
136
- gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", value='v1.4', label='version'),
137
- gr.Number(label="Rescaling factor", value=2),
138
- # gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', value=50)
139
- ], [
140
- gr.Image(type="numpy", label="Output (The whole image)"),
141
- gr.File(label="Download the output image")
142
- ],
143
- title=title,
144
- description=description,
145
- article=article,
146
- # examples=[['AI-generate.jpg', 'v1.4', 2, 50], ['lincoln.jpg', 'v1.4', 2, 50], ['Blake_Lively.jpg', 'v1.4', 2, 50],
147
- # ['10045.png', 'v1.4', 2, 50]]).launch()
148
- examples=[['AI-generate.jpg', 'v1.4', 2], ['lincoln.jpg', 'v1.4', 2], ['Blake_Lively.jpg', 'v1.4', 2],
149
- ['10045.png', 'v1.4', 2]])
150
- demo.queue().launch()
 
1
  import os
 
 
2
  import gradio as gr
3
+ from llama_cpp import Llama
4
+ import random
5
+ !wget https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q2_K.bin
6
+ llm = Llama(model_path="nous-hermes-13b.ggmlv3.q2_K.bin", seed=random.randint(1, 2**31))
7
+
8
+ with gr.Blocks() as demo:
9
+ chatbot = gr.Chatbot()
10
+ msg = gr.Textbox()
11
+ clear = gr.ClearButton([msg, chatbot])
12
+ #instruction = gr.Textbox(label="Instruction", placeholder=)
13
+
14
+ def user(user_message, history):
15
+ return gr.update(value="", interactive=True), history + [[user_message, None]]
16
+
17
+ def bot(history):
18
+ #instruction = history[-1][1] or ""
19
+ user_message = history[-1][0]
20
+ #token1 = llm.tokenize(b"### Instruction: ")
21
+ #token2 = llm.tokenize(instruction.encode())
22
+ token3 = llm.tokenize(b"### Input: ")
23
+ tokens3 = llm.tokenize(user_message.encode())
24
+ token4 = llm.tokenize(b"### Response:")
25
+ tokens = token3 + tokens3 + token4
26
+ history[-1][1] = ""
27
+ count = 0
28
+ output = ""
29
+ for token in llm.generate(tokens, top_k=50, top_p=0.73, temp=0.72, repeat_penalty=1.1):
30
+ text = llm.detokenize([token])
31
+ output += text.decode()
32
+ count += 1
33
+ if count >= 500 or (token == llm.token_eos()):
34
+ break
35
+ history[-1][1] += text.decode()
36
+ yield history
37
+
38
+ response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
39
+ bot, chatbot, chatbot
40
+ )
41
+ response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
42
+
43
+ demo.queue()
44
+ demo.launch(debug=True)