#function to pridiction by user input output tells if person is diabetic or not import joblib from sklearn.svm import SVC import streamlit as st import numpy as np import pandas as pd # Replace 'model_filename.pkl' with the path to your saved model file model = joblib.load('svm_model_dibetees.pkl') def predict_diabetes(Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age): # Create a DataFrame of the user input input_data = pd.DataFrame({ 'Pregnancies': [Pregnancies], 'Glucose': [Glucose], 'BloodPressure': [BloodPressure], 'SkinThickness': [SkinThickness], 'Insulin': [Insulin], 'BMI': [BMI], 'DiabetesPedigreeFunction': [DiabetesPedigreeFunction], 'Age': [Age] }) # Use the model to make a prediction prediction = model.predict(input_data) # Return the prediction return prediction[0] st.title("Dibetees Pridiction using Machine Learning: ") Pregnancies = st.text_input("Enter number of pregnencies") Glucose = st.text_input("Enter the Glucose Count") BP = st.text_input("Enter Blood Pressure") SkinThickness = st.text_input("Enter Skin Thickness Level") Insulin = st.text_input("Insulin level") BMI = st.text_input("BMI level") DiabetesPedigreeFunction = st.text_input("Enter DiabetesPedigreeFunction") Age = st.text_input("Enter the age") input_data = np.array([[Pregnancies, Glucose, BP, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age]]) if st.button("Predict"): pridiction = model.predict(input_data) st.success("Person is Diabetic" if pridiction == 1 else "Person is not Diabetic")