Spaces:
Sleeping
Sleeping
File size: 3,008 Bytes
d8d204a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import os
from dotenv import load_dotenv
import streamlit as st
from langchain_community.document_loaders import UnstructuredPDFLoader
from langchain_text_splitters.character import CharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_groq import ChatGroq
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
# load the environment variables
load_dotenv()
working_dir = os.path.dirname(os.path.abspath(__file__))
def load_document(file_path):
loader = UnstructuredPDFLoader(file_path)
documents = loader.load()
return documents
def setup_vectorstore(documents):
embeddings = HuggingFaceEmbeddings()
text_splitter = CharacterTextSplitter(
separator="/n",
chunk_size=1000,
chunk_overlap=200
)
doc_chunks = text_splitter.split_documents(documents)
vectorstore = FAISS.from_documents(doc_chunks, embeddings)
return vectorstore
def create_chain(vectorstore):
llm = ChatGroq(
model="llama-3.1-70b-versatile",
temperature=0
)
retriever = vectorstore.as_retriever()
memory = ConversationBufferMemory(
llm=llm,
output_key="answer",
memory_key="chat_history",
return_messages=True
)
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
chain_type="map_reduce",
memory=memory,
verbose=True
)
return chain
st.set_page_config(
page_title="Chat with Doc",
page_icon="📄",
layout="centered"
)
st.title("🦙 Chat with Doc - LLAMA 3.1")
# initialize the chat history in streamlit session state
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
uploaded_file = st.file_uploader(label="Upload your pdf file", type=["pdf"])
if uploaded_file:
file_path = f"{working_dir}/{uploaded_file.name}"
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = setup_vectorstore(load_document(file_path))
if "conversation_chain" not in st.session_state:
st.session_state.conversation_chain = create_chain(st.session_state.vectorstore)
for message in st.session_state.chat_history:
with st.chat_message(message["role"]):
st.markdown(message["content"])
user_input = st.chat_input("Ask Llama...")
if user_input:
st.session_state.chat_history.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
with st.chat_message("assistant"):
response = st.session_state.conversation_chain({"question": user_input})
assistant_response = response["answer"]
st.markdown(assistant_response)
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
|