import streamlit as st import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("Yah216/Sentiment_Analysis_CAMelBERT_msa_sixteenth_HARD") model = TFAutoModelForSequenceClassification.from_pretrained("Yah216/Sentiment_Analysis_CAMelBERT_msa_sixteenth_HARD") labels= model.config.label2id text = st.text_area("Enter some text!") if text: out = tf.math.softmax(model(tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="np")).logits, , axis = -1) res = out.numpy() labels['NEGATIVE'] = res[0,0] labels['NEUTRAL'] = res[0,1] labels['POSITIVE'] = res[0,2] st.json(labels)