sczhou commited on
Commit
fb27abb
1 Parent(s): b266889
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -109,7 +109,7 @@ def inference(image, background_enhance, face_upsample, upscale, codeformer_fide
109
  only_center_face = False
110
  draw_box = False
111
  detection_model = "retinaface_resnet50"
112
- print(image, background_enhance, face_upsample, upscale, codeformer_fidelity)
113
 
114
  upscale = int(upscale) # covert type to int
115
  if upscale > 4:
@@ -129,14 +129,14 @@ def inference(image, background_enhance, face_upsample, upscale, codeformer_fide
129
 
130
  img = cv2.imread(str(image), cv2.IMREAD_COLOR)
131
 
132
- print('Image size:', img.shape)
133
 
134
  if has_aligned:
135
  # the input faces are already cropped and aligned
136
  img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
137
  face_helper.is_gray = is_gray(img, threshold=5)
138
  if face_helper.is_gray:
139
- print('Grayscale input: True')
140
  face_helper.cropped_faces = [img]
141
  else:
142
  face_helper.read_image(img)
@@ -144,7 +144,7 @@ def inference(image, background_enhance, face_upsample, upscale, codeformer_fide
144
  num_det_faces = face_helper.get_face_landmarks_5(
145
  only_center_face=only_center_face, resize=640, eye_dist_threshold=5
146
  )
147
- print(f"\tdetect {num_det_faces} faces")
148
  # align and warp each face
149
  face_helper.align_warp_face()
150
 
@@ -166,7 +166,7 @@ def inference(image, background_enhance, face_upsample, upscale, codeformer_fide
166
  del output
167
  torch.cuda.empty_cache()
168
  except RuntimeError as error:
169
- print(f"\tFailed inference for CodeFormer: {error}")
170
  restored_face = tensor2img(
171
  cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
172
  )
@@ -202,7 +202,7 @@ def inference(image, background_enhance, face_upsample, upscale, codeformer_fide
202
  restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
203
  return restored_img, save_path
204
  except Exception as error:
205
- print('global exception', error)
206
  return None, None
207
 
208
 
@@ -248,7 +248,7 @@ demo = gr.Interface(
248
  gr.inputs.Checkbox(default=True, label="Background_Enhance"),
249
  gr.inputs.Checkbox(default=True, label="Face_Upsample"),
250
  gr.inputs.Number(default=2, label="Rescaling_Factor (up to 4)"),
251
- gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity: 0 better quality, 1 better identity')
252
  ], [
253
  gr.outputs.Image(type="numpy", label="Output"),
254
  gr.outputs.File(label="Download the output")
 
109
  only_center_face = False
110
  draw_box = False
111
  detection_model = "retinaface_resnet50"
112
+ print('Inp:', image, background_enhance, face_upsample, upscale, codeformer_fidelity)
113
 
114
  upscale = int(upscale) # covert type to int
115
  if upscale > 4:
 
129
 
130
  img = cv2.imread(str(image), cv2.IMREAD_COLOR)
131
 
132
+ print('\timage size:', img.shape)
133
 
134
  if has_aligned:
135
  # the input faces are already cropped and aligned
136
  img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
137
  face_helper.is_gray = is_gray(img, threshold=5)
138
  if face_helper.is_gray:
139
+ print('\tgrayscale input: True')
140
  face_helper.cropped_faces = [img]
141
  else:
142
  face_helper.read_image(img)
 
144
  num_det_faces = face_helper.get_face_landmarks_5(
145
  only_center_face=only_center_face, resize=640, eye_dist_threshold=5
146
  )
147
+ print(f'\tdetect {num_det_faces} faces')
148
  # align and warp each face
149
  face_helper.align_warp_face()
150
 
 
166
  del output
167
  torch.cuda.empty_cache()
168
  except RuntimeError as error:
169
+ print(f"Failed inference for CodeFormer: {error}")
170
  restored_face = tensor2img(
171
  cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
172
  )
 
202
  restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
203
  return restored_img, save_path
204
  except Exception as error:
205
+ print('Global exception', error)
206
  return None, None
207
 
208
 
 
248
  gr.inputs.Checkbox(default=True, label="Background_Enhance"),
249
  gr.inputs.Checkbox(default=True, label="Face_Upsample"),
250
  gr.inputs.Number(default=2, label="Rescaling_Factor (up to 4)"),
251
+ gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
252
  ], [
253
  gr.outputs.Image(type="numpy", label="Output"),
254
  gr.outputs.File(label="Download the output")