Update app.py
Browse files
app.py
CHANGED
@@ -1,160 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
import random
|
5 |
-
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
|
6 |
|
7 |
-
models=[
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
clients
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
return gr.update(label=models[inp])
|
30 |
-
|
31 |
-
def format_prompt(message, history, cust_p):
|
32 |
-
prompt = ""
|
33 |
-
if history:
|
34 |
-
for user_prompt, bot_response in history:
|
35 |
-
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
|
36 |
-
prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
|
37 |
-
if VERBOSE==True:
|
38 |
-
print(prompt)
|
39 |
-
#prompt += f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
|
40 |
-
prompt+=cust_p.replace("USER_INPUT",message)
|
41 |
-
return prompt
|
42 |
-
|
43 |
-
def chat_inf(system_prompt,prompt,history,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,cust_p):
|
44 |
-
#token max=8192
|
45 |
-
print(client_choice)
|
46 |
-
hist_len=0
|
47 |
-
client=clients[int(client_choice)-1]
|
48 |
-
if not history:
|
49 |
-
history = []
|
50 |
-
hist_len=0
|
51 |
-
if not memory:
|
52 |
-
memory = []
|
53 |
-
mem_len=0
|
54 |
-
if memory:
|
55 |
-
for ea in memory[0-chat_mem:]:
|
56 |
-
hist_len+=len(str(ea))
|
57 |
-
in_len=len(system_prompt+prompt)+hist_len
|
58 |
-
|
59 |
-
if (in_len+tokens) > 8000:
|
60 |
-
history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
|
61 |
-
yield history,memory
|
62 |
-
else:
|
63 |
-
generate_kwargs = dict(
|
64 |
-
temperature=temp,
|
65 |
-
max_new_tokens=tokens,
|
66 |
-
top_p=top_p,
|
67 |
-
repetition_penalty=rep_p,
|
68 |
-
do_sample=True,
|
69 |
-
seed=seed,
|
70 |
-
)
|
71 |
-
if system_prompt:
|
72 |
-
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0-chat_mem:],cust_p)
|
73 |
-
else:
|
74 |
-
formatted_prompt = format_prompt(prompt, memory[0-chat_mem:],cust_p)
|
75 |
-
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
|
76 |
-
output = ""
|
77 |
-
for response in stream:
|
78 |
-
output += response.token.text
|
79 |
-
yield [(prompt,output)],memory
|
80 |
-
history.append((prompt,output))
|
81 |
-
memory.append((prompt,output))
|
82 |
-
yield history,memory
|
83 |
-
|
84 |
-
if VERBOSE==True:
|
85 |
-
print("\n######### HIST "+str(in_len))
|
86 |
-
print("\n######### TOKENS "+str(tokens))
|
87 |
|
88 |
-
def get_screenshot(
|
89 |
-
|
90 |
-
|
91 |
-
if chatblock:
|
92 |
-
tog = 3
|
93 |
-
result = ss_client.predict(str(chat),height,width,chatblock,header,theme,wait,api_name="/run_script")
|
94 |
-
out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}'
|
95 |
-
print(out)
|
96 |
-
return out
|
97 |
|
98 |
def clear_fn():
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
if inp==True:
|
104 |
-
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
|
105 |
-
else:
|
106 |
-
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
107 |
-
|
108 |
-
with gr.Blocks() as app:
|
109 |
-
memory=gr.State()
|
110 |
-
gr.HTML("""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
|
111 |
-
chat_b = gr.Chatbot(height=500)
|
112 |
-
with gr.Group():
|
113 |
-
with gr.Row():
|
114 |
-
with gr.Column(scale=3):
|
115 |
-
inp = gr.Textbox(label="Prompt")
|
116 |
-
sys_inp = gr.Textbox(label="System Prompt (optional)")
|
117 |
-
with gr.Accordion("Prompt Format",open=False):
|
118 |
-
custom_prompt=gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=3,value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
|
119 |
-
with gr.Row():
|
120 |
-
with gr.Column(scale=2):
|
121 |
-
btn = gr.Button("Chat")
|
122 |
-
with gr.Column(scale=1):
|
123 |
-
with gr.Group():
|
124 |
-
stop_btn=gr.Button("Stop")
|
125 |
-
clear_btn=gr.Button("Clear")
|
126 |
-
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
|
127 |
-
with gr.Column(scale=1):
|
128 |
-
with gr.Group():
|
129 |
-
rand = gr.Checkbox(label="Random Seed", value=True)
|
130 |
-
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
|
131 |
-
tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
|
132 |
-
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
|
133 |
-
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
|
134 |
-
rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=0.99)
|
135 |
-
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)
|
136 |
-
with gr.Accordion(label="Screenshot",open=False):
|
137 |
-
with gr.Row():
|
138 |
-
with gr.Column(scale=3):
|
139 |
-
im_btn=gr.Button("Screenshot")
|
140 |
-
img=gr.Image(type='filepath')
|
141 |
-
with gr.Column(scale=1):
|
142 |
-
with gr.Row():
|
143 |
-
im_height=gr.Number(label="Height",value=5000)
|
144 |
-
im_width=gr.Number(label="Width",value=500)
|
145 |
-
wait_time=gr.Number(label="Wait Time",value=3000)
|
146 |
-
theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
|
147 |
-
chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
|
148 |
-
|
149 |
-
|
150 |
-
client_choice.change(load_models,client_choice,[chat_b])
|
151 |
-
app.load(load_models,client_choice,[chat_b])
|
152 |
-
|
153 |
-
im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
|
154 |
-
|
155 |
-
chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
|
156 |
-
go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
|
157 |
|
158 |
-
|
159 |
-
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b,memory])
|
160 |
app.queue(default_concurrency_limit=10).launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
import random
|
|
|
5 |
|
6 |
+
models = ["microsoft/DialoGPT-medium", "facebook/opt-125m"]
|
7 |
+
tokenizers = {name: AutoTokenizer.from_pretrained(name) for name in models}
|
8 |
+
clients = {name: AutoModelForCausalLM.from_pretrained(name).to('cpu') for name in models}
|
9 |
+
ss_client=AutoModelForCausalLM.from_pretrained("nchlt/omnibus-image-current-tab").to('cuda')
|
10 |
+
|
11 |
+
def load_models(choice):
|
12 |
+
return clients[choice],tokenizers[choice]
|
13 |
+
|
14 |
+
def chat_inf(sys, inp, chat, mem, cli, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt):
|
15 |
+
torch.manual_seed(int(seed))
|
16 |
+
if not sys:
|
17 |
+
sys = "<|startoftext|>"
|
18 |
+
if inp is None:
|
19 |
+
return [],[]
|
20 |
+
history=[(inp,chat)]
|
21 |
+
chat+=[inp]
|
22 |
+
response = cli.generate(torch.tensor([tokenizers[cli].encode(f'{sys}: {inp}\n') for inp in chat]), max_length=int(tokens), temperature=float(temp), top_p=float(top_p), do_sample=True, repetition_penalty=float(rep_p))
|
23 |
+
res = tokenizers[cli].decode(response[:, -1])
|
24 |
+
chat+=[res]
|
25 |
+
|
26 |
+
custom_prompt.text = "\n".join([f"{i}: {inp} <--> {res}" for i,(inp,res) in enumerate(history[::-1][:chat_mem])])
|
27 |
+
return res, chat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
def get_screenshot(cli, im_height, im_width, chatblock, theme, wait_time):
|
30 |
+
chat = cli.generate(torch.tensor([tokenizers[cli].encode('<|startoftext|>: '+'\n'.join([inp for i,(inp,res) in enumerate(history[::-1][:chatblock]) if not i%2])) for _ in range(5)]), max_length=int(tokens), temperature=float(temp), top_p=float(top_p), do_sample=True, repetition_penalty=float(rep_p))
|
31 |
+
return tokenizers[cli].decode(response[:, -1])
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def clear_fn():
|
34 |
+
inp.value = ""
|
35 |
+
sys_inp.value = ""
|
36 |
+
chat_b.value = []
|
37 |
+
memory.value = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
|
|
|
40 |
app.queue(default_concurrency_limit=10).launch()
|