import gradio as gr from huggingface_hub import InferenceClient import torch from transformers import pipeline # Inference client setup client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") pipe = pipeline("text-generation", "microsoft/Phi-3-mini-4k-instruct", torch_dtype=torch.bfloat16, device_map="auto") # Global flag to handle cancellation stop_inference = False def respond( message, history: list[tuple[str, str]], system_message="You are a friendly Chatbot.", max_tokens=512, temperature=0.7, top_p=0.95, use_local_model=False, ): global stop_inference stop_inference = False # Reset cancellation flag # Initialize history if it's None if history is None: history = [] if use_local_model: # local inference messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for output in pipe( messages, max_new_tokens=max_tokens, temperature=temperature, do_sample=True, top_p=top_p, ): if stop_inference: response = "Inference cancelled." yield history + [(message, response)] return token = output['generated_text'][-1]['content'] response += token yield history + [(message, response)] # Yield history + new response else: # API-based inference messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message_chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): if stop_inference: response = "Inference cancelled." yield history + [(message, response)] return if stop_inference: response = "Inference cancelled." break token = message_chunk.choices[0].delta.content response += token yield history + [(message, response)] # Yield history + new response def cancel_inference(): global stop_inference stop_inference = True # Custom CSS for a fancy look custom_css = """ #main-container { background-color: #f0f0f0; font-family: 'Arial', sans-serif; } .gradio-container { max-width: 700px; margin: 0 auto; padding: 20px; background: white; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); border-radius: 10px; } .gr-button { background-color: #4CAF50; color: white; border: none; border-radius: 5px; padding: 10px 20px; cursor: pointer; transition: background-color 0.3s ease; } .gr-button:hover { background-color: #45a049; } .gr-slider input { color: #4CAF50; } .gr-chat { font-size: 16px; } #title { text-align: center; font-size: 2em; margin-bottom: 20px; color: #333; } """ # Define the interface with gr.Blocks(css=custom_css) as demo: gr.Markdown("

🌟 Fancy AI Chatbot 🌟

") gr.Markdown("Interact with the AI chatbot using customizable settings below.") with gr.Row(): system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message", interactive=True) use_local_model = gr.Checkbox(label="Use Local Model", value=False) with gr.Row(): max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") chat_history = gr.Chatbot(label="Chat") user_input = gr.Textbox(show_label=False, placeholder="Type your message here...") cancel_button = gr.Button("Cancel Inference", variant="danger") # Adjusted to ensure history is maintained and passed correctly user_input.submit(respond, [user_input, chat_history, system_message, max_tokens, temperature, top_p, use_local_model], chat_history) cancel_button.click(cancel_inference) if __name__ == "__main__": demo.launch(share=False) # Remove share=True because it's not supported on HF Spaces