Spaces:
Sleeping
Sleeping
File size: 11,490 Bytes
ddea0a0 ace0b06 ddea0a0 33977ae baeafef ddea0a0 33977ae ddea0a0 365f659 83c4083 365f659 7c1777a c316620 7c1777a c316620 ddea0a0 33977ae ddea0a0 34e63ce ddea0a0 9175f99 ddea0a0 856c348 6625c7b 83c4083 6625c7b c316620 6625c7b c316620 6625c7b 7c1777a 6625c7b ddea0a0 6625c7b 5d61b75 6625c7b 7c1777a 5d61b75 6625c7b 9175f99 6625c7b 9175f99 6625c7b 7c1777a 6625c7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
#!/usr/bin/env python
from __future__ import annotations
import os
import random
from typing import Tuple, Optional
import gradio as gr
from huggingface_hub import HfApi
from inf import InferencePipeline
SAMPLE_MODEL_IDS = [
'lora-library/B-LoRA-teddybear',
'lora-library/B-LoRA-bull',
'lora-library/B-LoRA-wolf_plushie',
'lora-library/B-LoRA-pen_sketch',
'lora-library/B-LoRA-cartoon_line',
'lora-library/B-LoRA-child',
'lora-library/B-LoRA-vase',
'lora-library/B-LoRA-scary_mug',
'lora-library/B-LoRA-statue',
'lora-library/B-LoRA-colorful_teapot',
'lora-library/B-LoRA-grey_sloth_plushie',
'lora-library/B-LoRA-teapot',
'lora-library/B-LoRA-backpack_dog',
'lora-library/B-LoRA-buddha',
'lora-library/B-LoRA-dog6',
'lora-library/B-LoRA-poop_emoji',
'lora-library/B-LoRA-pot',
'lora-library/B-LoRA-fat_bird',
'lora-library/B-LoRA-elephant',
'lora-library/B-LoRA-metal_bird',
'lora-library/B-LoRA-cat',
'lora-library/B-LoRA-dog2',
'lora-library/B-LoRA-drawing1',
'lora-library/B-LoRA-village_oil',
'lora-library/B-LoRA-watercolor',
'lora-library/B-LoRA-house_3d',
'lora-library/B-LoRA-ink_sketch',
'lora-library/B-LoRA-drawing3',
'lora-library/B-LoRA-crayon_drawing',
'lora-library/B-LoRA-kiss',
'lora-library/B-LoRA-drawing4',
'lora-library/B-LoRA-working_cartoon',
'lora-library/B-LoRA-painting',
'lora-library/B-LoRA-drawing2'
'lora-library/B-LoRA-multi-dog2',
]
css = """
.gradio-container {
max-width: 1250px !important;
}
#title {
text-align: center;
}
#title h1 {
font-size: 250%;
}
.lora-title {
background-image: linear-gradient(to right, #314755 0%, #26a0da 51%, #314755 100%);
text-align: center;
border-radius: 10px;
display: block;
}
.lora-title h2 {
color: white !important;
}
.gr-image {
width: 512px;
height: 512px;
object-fit: contain;
margin: auto;
}
.res-image {
object-fit: contain;
margin: auto;
}
.lora-column {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
border: none;
background: none;
}
.gr-row {
align-items: center;
justify-content: center;
margin-top: 5px;
}
"""
def get_choices(hf_token):
api = HfApi(token=hf_token)
choices = [
info.modelId for info in api.list_models(author='lora-library')
]
models_list = ['None'] + SAMPLE_MODEL_IDS + choices
return models_list
def get_image_from_card(card, model_id) -> Optional[str]:
try:
card_path = f"https://huggingface.co/{model_id}/resolve/main/"
widget = card.data.get('widget')
if widget is not None or len(widget) > 0:
output = widget[0].get('output')
if output is not None:
url = output.get('url')
if url is not None:
return card_path + url
return None
except Exception:
return None
def demo_init():
try:
choices = get_choices(app.hf_token)
content_blora = random.choice(SAMPLE_MODEL_IDS)
style_blora = random.choice(SAMPLE_MODEL_IDS)
content_blora_prompt, content_blora_image = app.load_model_info(content_blora)
style_blora_prompt, style_blora_image = app.load_model_info(style_blora)
content_lora_model_id = gr.update(choices=choices, value=content_blora)
content_prompt = gr.update(value=content_blora_prompt)
content_image = gr.update(value=content_blora_image)
style_lora_model_id = gr.update(choices=choices, value=style_blora)
style_prompt = gr.update(value=style_blora_prompt)
style_image = gr.update(value=style_blora_image)
prompt = gr.update(
value=f'{content_blora_prompt} in {style_blora_prompt[0].lower() + style_blora_prompt[1:]} style')
return content_lora_model_id, content_prompt, content_image, style_lora_model_id, style_prompt, style_image, prompt
except Exception as e:
raise type(e)(f'failed to demo_init, due to: {e}')
def toggle_column(is_checked):
try:
return 'None' if is_checked else random.choice(SAMPLE_MODEL_IDS)
except Exception as e:
raise type(e)(f'failed to toggle_column, due to: {e}')
def handle_prompt_change(content_blora_prompt, style_blora_prompt) -> str:
try:
if content_blora_prompt and style_blora_prompt:
return f'{content_blora_prompt} in {style_blora_prompt[0].lower() + style_blora_prompt[1:]} style'
if content_blora_prompt:
return content_blora_prompt
if style_blora_prompt:
return f'A dog in {style_blora_prompt[0].lower() + style_blora_prompt[1:]} style'
return ''
except Exception as e:
raise type(e)(f'failed to handle_prompt_change, due to: {e}')
class InferenceUtil:
def __init__(self, hf_token: str | None):
self.hf_token = hf_token
def load_model_info(self, lora_model_id: str) -> Tuple[str, Optional[str]]:
try:
try:
card = InferencePipeline.get_model_card(lora_model_id,
self.hf_token)
except Exception:
return '', None
instance_prompt = getattr(card.data, 'instance_prompt', '')
image_url = get_image_from_card(card, lora_model_id)
return instance_prompt, image_url
except Exception as e:
raise type(e)(f'failed to load_model_info, due to: {e}')
def update_model_info(self, model_source: str):
try:
if model_source == 'None':
return '', None
else:
model_info = self.load_model_info(model_source)
new_prompt, new_image = model_info[0], model_info[1]
return new_prompt, new_image
except Exception as e:
raise type(e)(f'failed to update_model_info, due to: {e}')
hf_token = os.getenv('HF_TOKEN')
pipe = InferencePipeline(hf_token)
app = InferenceUtil(hf_token)
with gr.Blocks(css=css) as demo:
title = gr.HTML(
'''<h1>Implicit Style-Content Separation using B-LoRA</h1>
<p>This is a demo for our <a href="https://arxiv.org/abs/2403.14572">paper</a>: <b>''Implicit Style-Content Separation using B-LoRA''</b>.
<br>
Project page and code is available <a href="https://b-lora.github.io/B-LoRA/">here</a>.</p>
''',
elem_id="title"
)
with gr.Row(elem_classes="gr-row"):
with gr.Column():
with gr.Group(elem_classes="lora-column"):
content_sub_title = gr.HTML('''<h2>Content B-LoRA</h2>''', elem_classes="lora-title")
content_checkbox = gr.Checkbox(label='Use Content Only', value=False)
content_lora_model_id = gr.Dropdown(label='Model ID', choices=[])
content_prompt = gr.Text(label='Content instance prompt', interactive=False, max_lines=1)
content_image = gr.Image(label='Content Image', elem_classes="gr-image")
with gr.Column():
with gr.Group(elem_classes="lora-column"):
style_sub_title = gr.HTML('''<h2>Style B-LoRA</h2>''', elem_classes="lora-title")
style_checkbox = gr.Checkbox(label='Use Style Only', value=False)
style_lora_model_id = gr.Dropdown(label='Model ID', choices=[])
style_prompt = gr.Text(label='Style instance prompt', interactive=False, max_lines=1)
style_image = gr.Image(label='Style Image', elem_classes="gr-image")
with gr.Row(elem_classes="gr-row"):
with gr.Column():
with gr.Group():
prompt = gr.Textbox(
label='Prompt',
max_lines=1,
placeholder='Example: "A [c] in [s] style"'
)
result = gr.Gallery(label='Result', elem_classes="res-image")
with gr.Accordion('Other Parameters', open=False, elem_classes="gr-accordion"):
content_alpha = gr.Slider(label='Content B-LoRA alpha',
minimum=0,
maximum=2,
step=0.05,
value=1)
style_alpha = gr.Slider(label='Style B-LoRA alpha',
minimum=0,
maximum=2,
step=0.05,
value=1)
seed = gr.Slider(label='Seed',
minimum=0,
maximum=100000,
step=1,
value=8888)
num_steps = gr.Slider(label='Number of Steps',
minimum=0,
maximum=100,
step=1,
value=40)
guidance_scale = gr.Slider(label='CFG Scale',
minimum=0,
maximum=50,
step=0.1,
value=7.5)
num_images_per_prompt = gr.Slider(label='Number of Images per Prompt',
minimum=1,
maximum=4,
step=1,
value=2)
run_button = gr.Button('Generate')
demo.load(demo_init, inputs=[],
outputs=[content_lora_model_id, content_prompt, content_image, style_lora_model_id, style_prompt,
style_image, prompt], queue=False, show_progress="hidden")
content_lora_model_id.change(
fn=app.update_model_info,
inputs=content_lora_model_id,
outputs=[
content_prompt,
content_image,
])
style_lora_model_id.change(
fn=app.update_model_info,
inputs=style_lora_model_id,
outputs=[
style_prompt,
style_image,
])
style_prompt.change(
fn=handle_prompt_change,
inputs=[content_prompt, style_prompt],
outputs=prompt,
)
content_prompt.change(
fn=handle_prompt_change,
inputs=[content_prompt, style_prompt],
outputs=prompt,
)
content_checkbox.change(toggle_column, inputs=[content_checkbox],
outputs=[style_lora_model_id])
style_checkbox.change(toggle_column, inputs=[style_checkbox],
outputs=[content_lora_model_id])
inputs = [
content_lora_model_id,
style_lora_model_id,
prompt,
content_alpha,
style_alpha,
seed,
num_steps,
guidance_scale,
num_images_per_prompt
]
prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
run_button.click(fn=pipe.run, inputs=inputs, outputs=result)
demo.queue(max_size=10).launch(share=False)
|