from __future__ import annotations import gc import pathlib import gradio as gr import PIL.Image import torch from diffusers import StableDiffusionXLPipeline from huggingface_hub import ModelCard from blora_utils import BLOCKS, filter_lora, scale_lora class InferencePipeline: def __init__(self, hf_token: str | None = None): self.hf_token = hf_token self.base_model_id = "stabilityai/stable-diffusion-xl-base-1.0" self.device = torch.device( 'cuda:0' if torch.cuda.is_available() else 'cpu') if self.device.type == 'cpu': self.pipe = StableDiffusionXLPipeline.from_pretrained( self.base_model_id, use_auth_token=self.hf_token, cache_dir='./cache') else: self.pipe = StableDiffusionXLPipeline.from_pretrained( self.base_model_id, torch_dtype=torch.float16, use_auth_token=self.hf_token) self.pipe = self.pipe.to(self.device) self.content_lora_model_id = None self.style_lora_model_id = None def clear(self) -> None: self.content_lora_model_id = None self.style_lora_model_id = None del self.pipe self.pipe = None torch.cuda.empty_cache() gc.collect() def load_b_lora_to_unet(self, content_lora_model_id: str, style_lora_model_id: str, content_alpha: float, style_alpha: float) -> None: try: # Get Content B-LoRA SD if content_lora_model_id and content_lora_model_id != 'None': content_B_LoRA_sd, _ = self.pipe.lora_state_dict(content_lora_model_id, use_auth_token=self.hf_token) content_B_LoRA = filter_lora(content_B_LoRA_sd, BLOCKS['content']) content_B_LoRA = scale_lora(content_B_LoRA, content_alpha) else: content_B_LoRA = {} # Get Style B-LoRA SD if style_lora_model_id and style_lora_model_id != 'None': style_B_LoRA_sd, _ = self.pipe.lora_state_dict(style_lora_model_id, use_auth_token=self.hf_token) style_B_LoRA = filter_lora(style_B_LoRA_sd, BLOCKS['style']) style_B_LoRA = scale_lora(style_B_LoRA, style_alpha) else: style_B_LoRA = {} # Merge B-LoRAs SD res_lora = {**content_B_LoRA, **style_B_LoRA} # Load self.pipe.load_lora_into_unet(res_lora, None, self.pipe.unet) except Exception as e: raise type(e)(f'failed to load_b_lora_to_unet, due to: {e}') @staticmethod def check_if_model_is_local(lora_model_id: str) -> bool: return pathlib.Path(lora_model_id).exists() @staticmethod def get_model_card(model_id: str, hf_token: str | None = None) -> ModelCard: if InferencePipeline.check_if_model_is_local(model_id): card_path = (pathlib.Path(model_id) / 'README.md').as_posix() else: card_path = model_id return ModelCard.load(card_path, token=hf_token) @staticmethod def get_base_model_info(lora_model_id: str, hf_token: str | None = None) -> str: card = InferencePipeline.get_model_card(lora_model_id, hf_token) return card.data.base_model def load_pipe(self, content_lora_model_id: str, style_lora_model_id: str, content_alpha: float, style_alpha: float) -> None: if content_lora_model_id == self.content_lora_model_id and style_lora_model_id == self.style_lora_model_id: return self.pipe.unload_lora_weights() self.load_b_lora_to_unet(content_lora_model_id, style_lora_model_id, content_alpha, style_alpha) self.content_lora_model_id = content_lora_model_id self.style_lora_model_id = style_lora_model_id def run( self, content_lora_model_id: str, style_lora_model_id: str, prompt: str, content_alpha: float, style_alpha: float, seed: int, n_steps: int, guidance_scale: float, num_images_per_prompt: int = 1 ) -> PIL.Image.Image: if not torch.cuda.is_available(): raise gr.Error('CUDA is not available.') self.load_pipe(content_lora_model_id, style_lora_model_id, content_alpha, style_alpha) generator = torch.Generator(device=self.device).manual_seed(seed) out = self.pipe( prompt, num_inference_steps=n_steps, guidance_scale=guidance_scale, generator=generator, num_images_per_prompt=num_images_per_prompt, ) # type: ignore return out.images