Spaces:
Sleeping
Sleeping
# Created by yarramsettinaresh GORAKA DIGITAL PRIVATE LIMITED at 01/11/24 | |
import cv2 | |
import numpy as np | |
from ultralytics import YOLO | |
import torch | |
import gradio as gr | |
# Load your models | |
model = YOLO("chepala_lekka_v5_yolov11n.pt") | |
# Initialize global video capture variable | |
cap = None | |
text_margin = 10 | |
class_colors = { | |
"chepa": (255, 0, 0), # Red color for "chepa" | |
"sanchi": (0, 255, 0), # Green color for "sanchi" | |
"other_class": (0, 0, 255) # Blue color for other classes | |
} | |
class VideoProcessor: | |
def __init__(self): | |
self.g_bags = {} | |
self.g_fishes = {} | |
self.text_margin = 10 | |
self.class_colors = { | |
"chepa": (255, 0, 0), # Red for "chepa" | |
"sanchi": (0, 255, 0), # Green for "sanchi" | |
"other_class": (0, 0, 255) # Blue for other classes | |
} | |
self.cap = None | |
def gradio_video_stream(self, video_file): | |
print(f"gradio_video_stream init : {video_file}") | |
self.g_bags = {} | |
self.g_fishes = {} | |
self.cap = cv2.VideoCapture(video_file) # Open the uploaded video file | |
while True: | |
frame = self.process_frame() | |
if frame is None: | |
break | |
yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Convert BGR to RGB for Gradio | |
def process_frame(self): | |
g_fishes = self.g_fishes | |
g_bags = self.g_bags | |
cap = self.cap | |
ret, frame = cap.read() | |
if not ret: | |
cap.release() # Release the video capture if no frame is captured | |
return None # Return None if no frame is captured | |
frame_height, frame_width = frame.shape[:2] | |
results = model.track(frame, persist=True) | |
# person_result = person_model.predict(frame, show=False) | |
bag_pos = dict() | |
fishes_pos = dict() | |
if results[0].boxes.id is not None and results[0].masks is not None: | |
masks = results[0].masks.data | |
track_ids = results[0].boxes.id.int().cpu().tolist() | |
classes = results[0].boxes.cls # Class labels | |
confidences = results[0].boxes.conf | |
boxes = results[0].boxes.xyxy | |
for mask, track_id, cls, conf, box in zip(masks, track_ids, classes, confidences, boxes): | |
# Convert mask to numpy array if it is a tensor | |
if isinstance(mask, torch.Tensor): | |
mask = mask.cpu().numpy() | |
mask = mask # Convert to numpy array | |
mask = (mask * 255).astype(np.uint8) # Convert mask to binary format (0 or 255) | |
# Resize mask to match the original frame dimensions | |
mask_resized = cv2.resize(mask, (frame_width, frame_height), interpolation=cv2.INTER_NEAREST) | |
# Get the class name | |
class_name = model.names[int(cls)] | |
if class_name == "sanchi": | |
bag_pos[track_id] = dict(mask=mask) | |
elif class_name == "chepa": | |
fishes_pos[track_id] = mask | |
# Use static color for each class based on the class name | |
color = class_colors.get(class_name, (255, 255, 255)) # Default to white if class not in color map | |
color_mask = np.zeros_like(frame, dtype=np.uint8) | |
color_mask[mask_resized > 128] = color # Apply color where mask is | |
# Blend original frame with color mask | |
frame = cv2.addWeighted(frame, 1, color_mask, 0.5, 0) | |
# Display the label and confidence score on the frame | |
# Display the label and confidence score on the frame | |
label = f"{class_name}{track_id}" | |
position = np.where(mask_resized > 128) | |
if position[0].size > 0 and position[1].size > 0: | |
y, x = position[0][0], position[1][0] # Position for label | |
if not class_name == "sanchi": | |
cv2.putText(frame, label, (x, y), cv2.FONT_HERSHEY_SIMPLEX, 2, color, 3) | |
else: | |
bag_pos[track_id]["xy"] = (x, y) | |
for fish_id, fish_mask in fishes_pos.items(): | |
if fish_id not in g_fishes: | |
g_fishes[fish_id] = dict(in_sanchi=False) | |
if not g_fishes[fish_id]["in_sanchi"]: | |
for bag_id, bag_info in bag_pos.items(): | |
bag_mask = bag_info["mask"] | |
if np.any(np.logical_and(fish_mask, bag_mask)): | |
if bag_id not in g_bags: | |
g_bags[bag_id] = 0 | |
g_bags[bag_id] += 1 | |
g_fishes[fish_id]["in_sanchi"] = True | |
print(g_bags) | |
for bag_id, v in bag_pos.items(): | |
color = class_colors.get("sanchi", (255, 255, 255)) | |
label = f"{g_bags.get(bag_id, 0)}: sanchi{bag_id}" | |
cv2.putText(frame, label, v["xy"], cv2.FONT_HERSHEY_SIMPLEX, 2, color, 3) | |
# Loop through each bag position | |
# Loop through each bag entry | |
for bag_id, v in g_bags.items(): | |
if v: | |
# Set the text color to red | |
color = (0, 0, 255) # Red color in BGR format | |
label = f"BAG{bag_id}: {v}" | |
# Get the size of the text box | |
(text_width, text_height), baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 2, 5) | |
# Calculate the position for the rectangle (background) | |
x1 = frame_width - text_width - text_margin | |
y1 = text_margin + text_height + baseline | |
x2 = frame_width - text_margin | |
y2 = text_margin | |
# Draw a rectangle for the background | |
cv2.rectangle(frame, (x1, y2), (x2, y1), (0, 0, 0), thickness=-1) # Black rectangle | |
# Adjust the transparency (if you still want it) | |
# Optional: Create an overlay effect | |
overlay = frame.copy() | |
cv2.addWeighted(overlay, 0.5, frame, 0.5, 0, frame) # Create transparency effect | |
# Put the text on top of the rectangle | |
cv2.putText(frame, label, (x1, y2 + 100), cv2.FONT_HERSHEY_SIMPLEX, 2, color, 3) | |
return frame | |
# Gradio interface | |
iface = gr.Interface(fn=VideoProcessor().gradio_video_stream, | |
inputs=gr.Video(label="Upload Video"), | |
outputs=gr.Image(), | |
) | |
iface.launch() | |