# Created by yarramsettinaresh GORAKA DIGITAL PRIVATE LIMITED at 01/11/24 import cv2 import numpy as np from ultralytics import YOLO import torch import gradio as gr # Load your models model = YOLO("chepala_lekka_v5_yolov11n.pt") # Initialize global video capture variable cap = None text_margin = 10 class_colors = { "chepa": (255, 0, 0), # Red color for "chepa" "sanchi": (0, 255, 0), # Green color for "sanchi" "other_class": (0, 0, 255) # Blue color for other classes } class VideoProcessor: def __init__(self): self.g_bags = {} self.g_fishes = {} self.text_margin = 10 self.class_colors = { "chepa": (255, 0, 0), # Red for "chepa" "sanchi": (0, 255, 0), # Green for "sanchi" "other_class": (0, 0, 255) # Blue for other classes } self.cap = None def gradio_video_stream(self, video_file): print(f"gradio_video_stream init : {video_file}") self.g_bags = {} self.g_fishes = {} self.cap = cv2.VideoCapture(video_file) # Open the uploaded video file while True: frame = self.process_frame() if frame is None: break yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Convert BGR to RGB for Gradio def process_frame(self): g_fishes = self.g_fishes g_bags = self.g_bags cap = self.cap ret, frame = cap.read() if not ret: cap.release() # Release the video capture if no frame is captured return None # Return None if no frame is captured frame_height, frame_width = frame.shape[:2] results = model.track(frame, persist=True) # person_result = person_model.predict(frame, show=False) bag_pos = dict() fishes_pos = dict() if results[0].boxes.id is not None and results[0].masks is not None: masks = results[0].masks.data track_ids = results[0].boxes.id.int().cpu().tolist() classes = results[0].boxes.cls # Class labels confidences = results[0].boxes.conf boxes = results[0].boxes.xyxy for mask, track_id, cls, conf, box in zip(masks, track_ids, classes, confidences, boxes): # Convert mask to numpy array if it is a tensor if isinstance(mask, torch.Tensor): mask = mask.cpu().numpy() mask = mask # Convert to numpy array mask = (mask * 255).astype(np.uint8) # Convert mask to binary format (0 or 255) # Resize mask to match the original frame dimensions mask_resized = cv2.resize(mask, (frame_width, frame_height), interpolation=cv2.INTER_NEAREST) # Get the class name class_name = model.names[int(cls)] if class_name == "sanchi": bag_pos[track_id] = dict(mask=mask) elif class_name == "chepa": fishes_pos[track_id] = mask # Use static color for each class based on the class name color = class_colors.get(class_name, (255, 255, 255)) # Default to white if class not in color map color_mask = np.zeros_like(frame, dtype=np.uint8) color_mask[mask_resized > 128] = color # Apply color where mask is # Blend original frame with color mask frame = cv2.addWeighted(frame, 1, color_mask, 0.5, 0) # Display the label and confidence score on the frame # Display the label and confidence score on the frame label = f"{class_name}{track_id}" position = np.where(mask_resized > 128) if position[0].size > 0 and position[1].size > 0: y, x = position[0][0], position[1][0] # Position for label if not class_name == "sanchi": cv2.putText(frame, label, (x, y), cv2.FONT_HERSHEY_SIMPLEX, 2, color, 3) else: bag_pos[track_id]["xy"] = (x, y) for fish_id, fish_mask in fishes_pos.items(): if fish_id not in g_fishes: g_fishes[fish_id] = dict(in_sanchi=False) if not g_fishes[fish_id]["in_sanchi"]: for bag_id, bag_info in bag_pos.items(): bag_mask = bag_info["mask"] if np.any(np.logical_and(fish_mask, bag_mask)): if bag_id not in g_bags: g_bags[bag_id] = 0 g_bags[bag_id] += 1 g_fishes[fish_id]["in_sanchi"] = True print(g_bags) for bag_id, v in bag_pos.items(): color = class_colors.get("sanchi", (255, 255, 255)) label = f"{g_bags.get(bag_id, 0)}: sanchi{bag_id}" cv2.putText(frame, label, v["xy"], cv2.FONT_HERSHEY_SIMPLEX, 2, color, 3) # Loop through each bag position # Loop through each bag entry for bag_id, v in g_bags.items(): if v: # Set the text color to red color = (0, 0, 255) # Red color in BGR format label = f"BAG{bag_id}: {v}" # Get the size of the text box (text_width, text_height), baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 2, 5) # Calculate the position for the rectangle (background) x1 = frame_width - text_width - text_margin y1 = text_margin + text_height + baseline x2 = frame_width - text_margin y2 = text_margin # Draw a rectangle for the background cv2.rectangle(frame, (x1, y2), (x2, y1), (0, 0, 0), thickness=-1) # Black rectangle # Adjust the transparency (if you still want it) # Optional: Create an overlay effect overlay = frame.copy() cv2.addWeighted(overlay, 0.5, frame, 0.5, 0, frame) # Create transparency effect # Put the text on top of the rectangle cv2.putText(frame, label, (x1, y2 + 100), cv2.FONT_HERSHEY_SIMPLEX, 2, color, 3) return frame # Gradio interface iface = gr.Interface(fn=VideoProcessor().gradio_video_stream, inputs=gr.Video(label="Upload Video"), outputs=gr.Image(), ) iface.launch()