File size: 6,088 Bytes
2a135fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e4454b
2a135fe
 
 
 
 
 
76cdab0
2a135fe
 
 
 
 
 
 
 
 
76cdab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a135fe
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import logging
logging.basicConfig(level='ERROR')
import numpy as np
from tqdm import tqdm
import json
from collections import defaultdict
import matplotlib.pyplot as plt
from sklearn.metrics import auc, roc_curve
import matplotlib
import random
from ipdb import set_trace as bp
import time

matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42


matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42

# plot data 
def sweep(score, x):
    """
    Compute a ROC curve and then return the FPR, TPR, AUC, and ACC.
    """
    fpr, tpr, _ = roc_curve(x, -score)
    acc = np.max(1-(fpr+(1-tpr))/2)
    return fpr, tpr, auc(fpr, tpr), acc


def do_plot(prediction, answers, sweep_fn=sweep, metric='auc', legend="", output_dir=None):
    """
    Generate the ROC curves by using ntest models as test models and the rest to train.
    """
    fpr, tpr, auc, acc = sweep_fn(np.array(prediction), np.array(answers, dtype=bool))

    low = tpr[np.where(fpr<.05)[0][-1]]
    # bp()
    print('Attack %s   AUC %.4f, Accuracy %.4f, TPR@5%%FPR of %.4f\n'%(legend, auc,acc, low))

    metric_text = ''
    if metric == 'auc':
        metric_text = 'auc=%.3f'%auc
    elif metric == 'acc':
        metric_text = 'acc=%.3f'%acc

    plt.plot(fpr, tpr, label=legend+metric_text)
    return legend, auc,acc, low


def fig_fpr_tpr(all_output, output_dir):
    print("output_dir", output_dir)
    answers = []
    metric2predictions = defaultdict(list)
    for ex in all_output:
        answers.append(ex["label"])
        for metric in ex["pred"].keys():
            if ("raw" in metric) and ("clf" not in metric):
                continue
            metric2predictions[metric].append(ex["pred"][metric])
    
    plt.figure(figsize=(4,3))
    with open(f"{output_dir}/auc.txt", "w") as f:
        for metric, predictions in metric2predictions.items():
            legend, auc, acc, low = do_plot(predictions, answers, legend=metric, metric='auc', output_dir=output_dir)
            f.write('%s   AUC %.4f, Accuracy %.4f, TPR@0.1%%FPR of %.4f\n'%(legend, auc, acc, low))

    plt.semilogx()
    plt.semilogy()
    plt.xlim(1e-5,1)
    plt.ylim(1e-5,1)
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.plot([0, 1], [0, 1], ls='--', color='gray')
    plt.subplots_adjust(bottom=.18, left=.18, top=.96, right=.96)
    plt.legend(fontsize=8)
    plt.savefig(f"{output_dir}/auc.png")


def load_jsonl(input_path):
    with open(input_path, 'r') as f:
        data = [json.loads(line) for line in tqdm(f)]
    random.seed(0)
    random.shuffle(data)
    return data

def dump_jsonl(data, path):
    with open(path, 'w') as f:
        for line in tqdm(data):
            f.write(json.dumps(line) + "\n")

def read_jsonl(path):
    with open(path, 'r') as f:
        return [json.loads(line) for line in tqdm(f)]

def convert_huggingface_data_to_list_dic(dataset):
    all_data = []
    for i in range(len(dataset)):
        ex = dataset[i]
        all_data.append(ex)
    return all_data


def process_truthful_qa(data):
    new_data = []
    for ex in data:
        new_ex = {}
        label = ex["mc2_targets"]["labels"].index(1)
        output = ex["mc2_targets"]["choices"][label]
        # We change to mc2 instead of mc1 as it's those that open llm lead uses. (check about)
        new_ex["output"] = output
        new_ex["input"] = ex["question"] + " " + output
        new_data.append(new_ex)
    return new_data



def process_mmlu(data):
    new_data = []
    for ex in data:
        new_ex = {}
        label = ex["choices"][ex["answer"]]
        output = label
        new_ex["output"] = output
        new_ex["input"] = ex["question"] + " " + output
        new_data.append(new_ex)
    return new_data


def process_arc(data):
    new_data = []
    choice2label = {"A": 0, "B": 1, "C": 2, "D": 3}
    for ex in data:
        new_ex = {}
        # bp()
        # print(ex["answerKey"])
        if ex["answerKey"] not in choice2label:
            continue
        label = choice2label[ex["answerKey"]]
        output = ex["choices"]["text"][label]
        new_ex["output"] = output
        new_ex["input"] = ex["question"] + " " + output
        new_data.append(new_ex)
    return new_data

def process_gsm8k(data):
    new_data = []
    for ex in data:
        new_ex = {}
        output = ex["answer"].split('####')[0].strip()
        new_ex["output"] = output
        new_ex["input"] = ex["question"] + " " + output
        new_data.append(new_ex)
    return new_data

def process_winogrande(data):
    '''
    new_data = []
    for ex in data:
        new_ex = {}
        label = int(ex["answer"])
        output = ex[f"option{label}"]
        new_ex["output"] = output
        new_ex["input"] = ex["sentence"] + " " + output
        new_data.append(new_ex)
    return new_data
    '''
    new_data = []
    for doc in data:
        new_doc = {}

        # Convert the answer to a numeric index
        answer_to_num = {"1": 0, "2": 1}
        label_idx = answer_to_num[doc["answer"]]

        # Generate options and select the correct one based on label_idx
        options = [doc["option1"], doc["option2"]]
        output = options[label_idx]

        # Build the new sentence by inserting the selected option
        idx = doc["sentence"].index("_")
        input_sentence = doc["sentence"][:idx] + output + doc["sentence"][idx+1:]

        # Assigning the processed values to the new_doc
        new_doc["output"] = output
        new_doc["input"] = input_sentence

        # Append the processed document to new_data
        new_data.append(new_doc)

    return new_data
# I'm not sure if that's the correct format for winogrande given how the dataset works.

def process_hellaswag(data):
    new_data = []
    for ex in data:
        new_ex = {}
        label = int(ex["label"]) # For some reason label is in str and not int?
        output = ex["endings"][label]
        new_ex["output"] = output
        new_ex["input"] = ex["ctx"] + " " + output
        new_data.append(new_ex)
    return new_data