File size: 32,444 Bytes
e308842 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
import os
import json
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForCausalLM,
TrainingArguments,
Trainer,
AutoModelForTextToWaveform,
GPT2LMHeadModel,
GPT2Tokenizer,
pipeline,
AutoModelForSeq2SeqLM,
AutoFeatureExtractor,
AutoModelForAudioClassification,
)
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import HTMLResponse, FileResponse
import multiprocessing
import uuid
import numpy as np
from PIL import Image
import requests
from dotenv import load_dotenv
from huggingface_hub import HfApi, HfFolder
import psutil
import gc
load_dotenv()
app = FastAPI()
default_language = "es"
RAM_STORAGE = {}
gpt2_variants = [
"gpt2",
"gpt2-medium",
"gpt2-large",
"gpt2-xl"
]
global_models = {}
global_tokenizers = {}
def download_model(model_class, pretrained_name):
while True:
try:
model = model_class.from_pretrained(
pretrained_name, local_files_only=False, resume_download=True
)
return model
except Exception as e:
print(f"Error downloading {pretrained_name}: {e}")
print("Retrying download...")
try:
model = model_class.from_pretrained(
pretrained_name,
local_files_only=False,
resume_download=True,
force_download=True,
)
return model
except Exception as e:
print(f"Failed to download after retry: {e}")
return None
for variant in gpt2_variants:
global_tokenizers[variant] = download_model(AutoTokenizer, variant)
global_models[variant] = download_model(AutoModelForCausalLM, variant)
global_models["musicgen-small"] = download_model(
AutoModelForTextToWaveform, "facebook/musicgen-small"
)
global_tokenizers["musicgen-small"] = download_model(
AutoTokenizer, "facebook/musicgen-small"
)
global_models["stable-diffusion-v1-4"] = download_model(
StableDiffusionPipeline, "CompVis/stable-diffusion-v1-4"
)
global_models["stable-diffusion-2-1"] = download_model(
StableDiffusionPipeline, "stabilityai/stable-diffusion-2-1"
)
global_tokenizers["codegen-350M-mono"] = download_model(
AutoTokenizer, "Salesforce/codegen-350M-mono"
)
global_models["codegen-350M-mono"] = download_model(
AutoModelForCausalLM, "Salesforce/codegen-350M-mono"
)
global_tokenizers["bart-large-cnn"] = download_model(
AutoTokenizer, "facebook/bart-large-cnn"
)
global_models["bart-large-cnn"] = download_model(
AutoModelForSeq2SeqLM, "facebook/bart-large-cnn"
)
global_tokenizers["m2m100_418M"] = download_model(
AutoTokenizer, "facebook/m2m100_418M"
)
global_models["m2m100_418M"] = download_model(
AutoModelForSeq2SeqLM, "facebook/m2m100_418M"
)
global_tokenizers["wav2vec2-base"] = download_model(
AutoFeatureExtractor, "facebook/wav2vec2-base"
)
global_models["wav2vec2-base"] = download_model(
AutoModelForAudioClassification, "facebook/wav2vec2-base"
)
global_tokenizers[
"distilbert-base-uncased-finetuned-sst-2-english"
] = download_model(AutoTokenizer, "distilbert-base-uncased-finetuned-sst-2-english")
global_models["distilbert-base-uncased-finetuned-sst-2-english"] = download_model(
AutoModelForSequenceClassification,
"distilbert-base-uncased-finetuned-sst-2-english",
)
global_models["stable-diffusion-2-1-base"] = download_model(
StableDiffusionImg2ImgPipeline, "stabilityai/stable-diffusion-2-1-base"
)
class ChatbotService:
def __init__(self, model_name="response_model", tokenizer_name="response_tokenizer"):
self.model_name = model_name
self.tokenizer_name = tokenizer_name
self.model = self.load_model()
self.tokenizer = self.load_tokenizer()
def get_response(self, user_id, message, language=default_language):
if self.model is None or self.tokenizer is None:
return "El modelo aún no está listo. Por favor, inténtelo de nuevo más tarde."
input_text = f"Usuario: {message} Asistente:"
input_ids = self.tokenizer.encode(input_text, return_tensors="pt").to("cpu")
with torch.no_grad():
output = self.model.generate(
input_ids=input_ids,
max_length=100,
num_beams=5,
no_repeat_ngram_size=2,
early_stopping=True,
)
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
response = response.replace(input_text, "").strip()
return response
def load_model(self):
if self.model_name in global_models:
return global_models[self.model_name]
return None
def load_tokenizer(self):
if self.tokenizer_name in global_tokenizers:
return global_tokenizers[self.tokenizer_name]
return None
def save_model(self):
global_models[self.model_name] = self.model
def save_tokenizer(self):
global_tokenizers[self.tokenizer_name] = self.tokenizer
chatbot_services = {}
for variant in gpt2_variants:
chatbot_services[variant] = ChatbotService(model_name=variant, tokenizer_name=variant)
programming_service = ChatbotService(
model_name="codegen-350M-mono", tokenizer_name="codegen-350M-mono"
)
summarization_service = ChatbotService(
model_name="bart-large-cnn", tokenizer_name="bart-large-cnn"
)
translation_service = ChatbotService(
model_name="m2m100_418M", tokenizer_name="m2m100_418M"
)
sentiment_analysis_service = ChatbotService(
model_name="distilbert-base-uncased-finetuned-sst-2-english",
tokenizer_name="distilbert-base-uncased-finetuned-sst-2-english",
)
class UnifiedModel(AutoModelForSequenceClassification):
def __init__(self, config):
super().__init__(config)
@staticmethod
def load_model():
model_name = "unified_model"
if model_name in RAM_STORAGE:
return RAM_STORAGE[model_name]
else:
model = UnifiedModel.from_pretrained("gpt2", num_labels=3)
RAM_STORAGE[model_name] = model
return model
class SyntheticDataset(torch.utils.data.Dataset):
def __init__(self, tokenizer, data):
self.tokenizer = tokenizer
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
text = item["text"]
label = item["label"]
tokens = self.tokenizer(
text, padding="max_length", truncation=True, max_length=128, return_tensors="pt"
)
return {
"input_ids": tokens["input_ids"].squeeze(),
"attention_mask": tokens["attention_mask"].squeeze(),
"labels": label,
}
conversation_history = {}
tokenizer_name = "unified_tokenizer"
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
unified_model = UnifiedModel.load_model()
unified_model.to(torch.device("cpu"))
musicgen_tokenizer = global_tokenizers["musicgen-small"]
musicgen_model = global_models["musicgen-small"]
stable_diffusion_pipeline = global_models["stable-diffusion-v1-4"]
stable_diffusion_pipeline.enable_model_cpu_offload()
img2img_pipeline = global_models["stable-diffusion-2-1-base"]
img2img_pipeline.enable_model_cpu_offload()
@app.on_event("startup")
async def startup_event():
auto_learn_process = multiprocessing.Process(target=train_unified_model)
auto_learn_process.start()
music_training_process = multiprocessing.Process(target=auto_learn_music)
music_training_process.start()
image_training_process = multiprocessing.Process(target=auto_learn_images)
image_training_process.start()
programming_training_process = multiprocessing.Process(target=train_programming_model)
programming_training_process.start()
summarization_process = multiprocessing.Process(target=train_summarization_model)
summarization_process.start()
translation_process = multiprocessing.Process(target=train_translation_model)
translation_process.start()
sentiment_analysis_process = multiprocessing.Process(
target=train_sentiment_analysis_model
)
sentiment_analysis_process.start()
image_editing_process = multiprocessing.Process(target=train_image_editing_model)
image_editing_process.start()
@app.post("/generate_image")
async def generate_image(request: Request):
data = await request.json()
prompt = data.get("prompt")
if not prompt:
raise HTTPException(status_code=400, detail="Missing 'prompt' in request body.")
image = stable_diffusion_pipeline(prompt).images[0]
image_path = "generated_image.png"
image.save(image_path)
RAM_STORAGE[image_path] = image.tobytes()
del image # Release memory
gc.collect()
return FileResponse(image_path, media_type="image/png")
@app.post("/edit_image")
async def edit_image(request: Request):
data = await request.json()
image_url = data.get("image_url")
prompt = data.get("prompt")
if not image_url or not prompt:
raise HTTPException(
status_code=400, detail="Missing 'image_url' or 'prompt' in request body."
)
image = Image.open(requests.get(image_url, stream=True).raw)
edited_image = img2img_pipeline(prompt=prompt, image=image).images[0]
edited_image_path = "edited_image.png"
edited_image.save(edited_image_path)
RAM_STORAGE[edited_image_path] = edited_image.tobytes()
del image, edited_image # Release memory
gc.collect()
return FileResponse(edited_image_path, media_type="image/png")
@app.post("/process")
async def process(request: Request):
global tokenizer, unified_model, chatbot_services
data = await request.json()
if data.get("train"):
user_data = data.get("user_data", [])
if not user_data:
user_data = [
{"text": "Hola", "label": 1},
{"text": "Necesito ayuda", "label": 2},
{"text": "No entiendo", "label": 0},
]
training_queue_path = "training_queue.json"
if training_queue_path in RAM_STORAGE:
existing_data = json.loads(RAM_STORAGE[training_queue_path])
else:
existing_data = []
RAM_STORAGE[training_queue_path] = json.dumps(
existing_data
+ [{"tokenizers": {tokenizer_name: tokenizer.get_vocab()}, "data": user_data}]
)
return {"message": "Training data received. Model will be updated asynchronously."}
elif data.get("message"):
user_id = data.get("user_id")
text = data["message"]
language = data.get("language", default_language)
model_variant = data.get("model_variant", "gpt2")
if user_id not in conversation_history:
conversation_history[user_id] = []
conversation_history[user_id].append(text)
contextualized_text = " ".join(conversation_history[user_id][-3:])
if model_variant in chatbot_services:
response = chatbot_services[model_variant].get_response(
user_id, contextualized_text, language
)
elif model_variant == "programming":
response = programming_service.get_response(
user_id, contextualized_text, language
)
elif model_variant == "summarization":
response = summarization_service.get_response(
user_id, contextualized_text, language
)
elif model_variant == "translation":
response = translation_service.get_response(
user_id, contextualized_text, language
)
elif model_variant == "sentiment_analysis":
response = sentiment_analysis_service.get_response(
user_id, contextualized_text, language
)
else:
response = chatbot_services["gpt2"].get_response(
user_id, contextualized_text, language
)
training_queue_path = "training_queue.json"
if training_queue_path in RAM_STORAGE:
existing_data = json.loads(RAM_STORAGE[training_queue_path])
else:
existing_data = []
RAM_STORAGE[training_queue_path] = json.dumps(
existing_data
+ [
{
"tokenizers": {tokenizer_name: tokenizer.get_vocab()},
"data": [{"text": contextualized_text, "label": 0}],
}
]
)
return {"answer": response}
else:
raise HTTPException(status_code=400, detail="Request must contain 'train' or 'message'.")
@app.get("/")
async def get_home():
user_id = str(uuid.uuid4())
html_code = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Chatbot</title>
<style>
body {{font-family: 'Arial', sans-serif;background-color: #f4f4f9;margin: 0;padding: 0;display: flex;align-items: center;justify-content: center;min-height: 100vh;}}
.container {{background-color: #fff;border-radius: 10px;box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);overflow: hidden;width: 400px;max-width: 90%;}}
h1 {{color: #333;text-align: center;padding: 20px;margin: 0;background-color: #f8f9fa;border-bottom: 1px solid #eee;}}
#chatbox {{height: 300px;overflow-y: auto;padding: 10px;border-bottom: 1px solid #eee;}}
.message {{margin-bottom: 10px;padding: 10px;border-radius: 5px;}}
.message.user {{background-color: #e1f5fe;text-align: right;}}
.message.bot {{background-color: #f1f1f1;text-align: left;}}
#input {{display: flex;padding: 10px;}}
#input textarea {{flex: 1;padding: 10px;border: 1px solid #ddd;border-radius: 4px;margin-right: 10px;}}
#input button {{padding: 10px 20px;border: none;border-radius: 4px;background-color: #007bff;color: #fff;cursor: pointer;}}
#input button:hover {{background-color: #0056b3;}}
</style>
</head>
<body>
<div class="container">
<h1>Chatbot</h1>
<div id="chatbox"></div>
<div id="input">
<textarea id="message" rows="3" placeholder="Escribe tu mensaje aquí..."></textarea>
<button id="send">Enviar</button>
</div>
</div>
<script>
const chatbox = document.getElementById('chatbox');
const messageInput = document.getElementById('message');
const sendButton = document.getElementById('send');
function appendMessage(text, sender) {{
const messageDiv = document.createElement('div');
messageDiv.classList.add('message', sender);
messageDiv.textContent = text;
chatbox.appendChild(messageDiv);
chatbox.scrollTop = chatbox.scrollHeight;
}}
async function sendMessage() {{
const message = messageInput.value;
if (!message.trim()) return;
appendMessage(message, 'user');
messageInput.value = '';
const response = await fetch('/process', {{
method: 'POST',
headers: {{'Content-Type': 'application/json'}},
body: JSON.stringify({{message: message, user_id: '{user_id}'}})
}});
const data = await response.json();
appendMessage(data.answer, 'bot');
}}
sendButton.addEventListener('click', sendMessage);
messageInput.addEventListener('keypress', (e) => {{
if (e.key === 'Enter' && !e.shiftKey) {{
e.preventDefault();
sendMessage();
}}
}});
</script>
</body>
</html>
"""
return HTMLResponse(content=html_code)
def train_unified_model():
global tokenizer, unified_model
model_name = "unified_model"
training_args = TrainingArguments(
output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3
)
while True:
check_resource_usage()
training_queue_path = "training_queue.json"
if training_queue_path in RAM_STORAGE:
training_data_list = json.loads(RAM_STORAGE[training_queue_path])
if training_data_list:
training_data = training_data_list.pop(0)
RAM_STORAGE[training_queue_path] = json.dumps(training_data_list)
tokenizer_data = training_data.get("tokenizers")
if tokenizer_data:
tokenizer_name = list(tokenizer_data.keys())[0]
existing_tokens = tokenizer.get_vocab()
new_tokens = tokenizer_data[tokenizer_name]
for token, id in new_tokens.items():
if token not in existing_tokens:
tokenizer.add_tokens([token])
data = training_data.get("data", [])
if data:
dataset = SyntheticDataset(tokenizer, data)
trainer = Trainer(
model=unified_model, args=training_args, train_dataset=dataset
)
trainer.train()
RAM_STORAGE[model_name] = unified_model.state_dict()
upload_unified_model(unified_model, tokenizer)
initial_data_path = "initial_data.json"
if initial_data_path in RAM_STORAGE:
initial_data = json.loads(RAM_STORAGE[initial_data_path])
dataset = SyntheticDataset(tokenizer, initial_data)
trainer = Trainer(
model=unified_model, args=training_args, train_dataset=dataset
)
trainer.train()
RAM_STORAGE[model_name] = unified_model.state_dict()
upload_unified_model(unified_model, tokenizer)
def auto_learn_music():
global musicgen_tokenizer, musicgen_model
while True:
check_resource_usage()
music_training_queue_path = "music_training_queue.json"
if music_training_queue_path in RAM_STORAGE:
music_training_data_list = json.loads(RAM_STORAGE[music_training_queue_path])
if music_training_data_list:
music_training_data = music_training_data_list.pop(0)
RAM_STORAGE[music_training_queue_path] = json.dumps(
music_training_data_list
)
inputs = musicgen_tokenizer(
music_training_data, return_tensors="pt", padding=True
).to("cpu")
musicgen_model.to("cpu")
musicgen_model.train()
optimizer = torch.optim.Adam(musicgen_model.parameters(), lr=5e-5)
loss_fn = torch.nn.CrossEntropyLoss()
for epoch in range(1):
outputs = musicgen_model(**inputs)
loss = loss_fn(outputs.logits, inputs["labels"])
optimizer.zero_grad()
loss.backward()
optimizer.step()
global_models["musicgen-small"] = musicgen_model
upload_unified_model(unified_model, tokenizer)
def auto_learn_images():
global stable_diffusion_pipeline
while True:
check_resource_usage()
image_training_queue_path = "image_training_queue.json"
if image_training_queue_path in RAM_STORAGE:
image_training_data_list = json.loads(RAM_STORAGE[image_training_queue_path])
if image_training_data_list:
image_training_data = image_training_data_list.pop(0)
RAM_STORAGE[image_training_queue_path] = json.dumps(
image_training_data_list
)
for image_prompt in image_training_data:
image = stable_diffusion_pipeline(
image_prompt,
guidance_scale=0.0,
num_inference_steps=4,
max_sequence_length=256,
generator=torch.Generator("cpu").manual_seed(0),
).images[0]
image_tensor = torch.tensor(np.array(image)).unsqueeze(0).to("cpu")
stable_diffusion_pipeline.unet.to("cpu")
stable_diffusion_pipeline.unet.train()
optimizer = torch.optim.Adam(
stable_diffusion_pipeline.unet.parameters(), lr=1e-5
)
loss_fn = torch.nn.MSELoss()
target_tensor = torch.zeros_like(image_tensor)
for epoch in range(1):
outputs = stable_diffusion_pipeline.unet(image_tensor)
loss = loss_fn(outputs, target_tensor)
optimizer.zero_grad()
loss.backward()
optimizer.step()
del image, image_tensor, target_tensor # Release memory
gc.collect()
global_models["stable-diffusion-v1-4"] = stable_diffusion_pipeline
upload_unified_model(unified_model, tokenizer)
def train_programming_model():
global programming_service
model_name = "codegen-350M-mono"
tokenizer_name = "codegen-350M-mono"
model = global_models[model_name]
tokenizer = global_tokenizers[tokenizer_name]
while True:
check_resource_usage()
training_queue_path = "programming_training_queue.json"
if training_queue_path in RAM_STORAGE:
training_data_list = json.loads(RAM_STORAGE[training_queue_path])
if training_data_list:
training_data = training_data_list.pop(0)
RAM_STORAGE[training_queue_path] = json.dumps(training_data_list)
new_code = training_data.get("code", "")
if new_code:
inputs = tokenizer(new_code, return_tensors="pt").to("cpu")
model.to("cpu")
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=5e-5)
loss_fn = torch.nn.CrossEntropyLoss()
for epoch in range(1):
outputs = model(**inputs, labels=inputs["input_ids"])
loss = outputs.loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
global_models[model_name] = model
programming_service.model = model
programming_service.tokenizer = tokenizer
upload_unified_model(unified_model, tokenizer)
def train_summarization_model():
global summarization_service
model_name = "bart-large-cnn"
tokenizer_name = "bart-large-cnn"
model = global_models[model_name]
tokenizer = global_tokenizers[tokenizer_name]
while True:
check_resource_usage()
training_queue_path = "summarization_training_queue.json"
if training_queue_path in RAM_STORAGE:
training_data_list = json.loads(RAM_STORAGE[training_queue_path])
if training_data_list:
training_data = training_data_list.pop(0)
RAM_STORAGE[training_queue_path] = json.dumps(training_data_list)
new_text = training_data.get("text", "")
new_summary = training_data.get("summary", "")
if new_text and new_summary:
inputs = tokenizer(
new_text, return_tensors="pt", truncation=True, max_length=512
).to("cpu")
labels = tokenizer(
new_summary, return_tensors="pt", truncation=True, max_length=128
).to("cpu")
model.to("cpu")
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=5e-5)
loss_fn = torch.nn.CrossEntropyLoss()
for epoch in range(1):
outputs = model(**inputs, labels=labels["input_ids"])
loss = outputs.loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
global_models[model_name] = model
summarization_service.model = model
summarization_service.tokenizer = tokenizer
upload_unified_model(unified_model, tokenizer)
def train_translation_model():
global translation_service
model_name = "m2m100_418M"
tokenizer_name = "m2m100_418M"
model = global_models[model_name]
tokenizer = global_tokenizers[tokenizer_name]
while True:
check_resource_usage()
training_queue_path = "translation_training_queue.json"
if training_queue_path in RAM_STORAGE:
training_data_list = json.loads(RAM_STORAGE[training_queue_path])
if training_data_list:
training_data = training_data_list.pop(0)
RAM_STORAGE[training_queue_path] = json.dumps(training_data_list)
new_text = training_data.get("text", "")
target_language = training_data.get("target_language", "en")
if new_text:
inputs = tokenizer(
new_text, return_tensors="pt", truncation=True, max_length=512
).to("cpu")
model.to("cpu")
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=5e-5)
loss_fn = torch.nn.CrossEntropyLoss()
with tokenizer.as_target_tokenizer():
labels = tokenizer(
new_text,
return_tensors="pt",
truncation=True,
max_length=512,
).to("cpu")
for epoch in range(1):
outputs = model(**inputs, labels=labels["input_ids"])
loss = outputs.loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
global_models[model_name] = model
translation_service.model = model
translation_service.tokenizer = tokenizer
upload_unified_model(unified_model, tokenizer)
def train_sentiment_analysis_model():
global sentiment_analysis_service
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer_name = "distilbert-base-uncased-finetuned-sst-2-english"
model = global_models[model_name]
tokenizer = global_tokenizers[tokenizer_name]
while True:
check_resource_usage()
training_queue_path = "sentiment_analysis_training_queue.json"
if training_queue_path in RAM_STORAGE:
training_data_list = json.loads(RAM_STORAGE[training_queue_path])
if training_data_list:
training_data = training_data_list.pop(0)
RAM_STORAGE[training_queue_path] = json.dumps(training_data_list)
new_text = training_data.get("text", "")
sentiment_label = training_data.get("sentiment", 1)
if new_text:
inputs = tokenizer(
new_text, return_tensors="pt", truncation=True, max_length=128
).to("cpu")
labels = torch.tensor([sentiment_label]).to("cpu")
model.to("cpu")
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=5e-5)
loss_fn = torch.nn.CrossEntropyLoss()
for epoch in range(1):
outputs = model(**inputs, labels=labels)
loss = outputs.loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
global_models[model_name] = model
sentiment_analysis_service.model = model
sentiment_analysis_service.tokenizer = tokenizer
upload_unified_model(unified_model, tokenizer)
def train_image_editing_model():
global img2img_pipeline
model_name = "stable-diffusion-2-1-base"
model = global_models[model_name]
while True:
check_resource_usage()
training_queue_path = "image_editing_training_queue.json"
if training_queue_path in RAM_STORAGE:
training_data_list = json.loads(RAM_STORAGE[training_queue_path])
if training_data_list:
training_data = training_data_list.pop(0)
RAM_STORAGE[training_queue_path] = json.dumps(training_data_list)
image_url = training_data.get("image_url")
prompt = training_data.get("prompt")
if image_url and prompt:
image = Image.open(requests.get(image_url, stream=True).raw)
image = image.resize((512, 512))
model.to("cpu")
model.train()
optimizer = torch.optim.Adam(model.unet.parameters(), lr=5e-5)
loss_fn = torch.nn.MSELoss()
for epoch in range(1):
outputs = model(
prompt=prompt, image=image, strength=0.8, guidance_scale=7.5
)
loss = loss_fn(outputs.images[0], image)
optimizer.zero_grad()
loss.backward()
optimizer.step()
del image # Release memory
gc.collect()
global_models[model_name] = model
img2img_pipeline = model
img2img_pipeline.enable_model_cpu_offload()
upload_unified_model(unified_model, tokenizer)
def upload_unified_model(model, tokenizer):
"""Uploads the unified model and tokenizer to Hugging Face Hub."""
api = HfApi()
repo_id = "Yhhxhfh/test"
token = os.getenv("HF_API_TOKEN")
if token:
api.create_repo(repo_id=repo_id, token=token, exist_ok=True, private=True)
model.push_to_hub(repo_id, use_auth_token=token)
tokenizer.push_to_hub(repo_id, use_auth_token=token)
else:
print("Hugging Face API token not found. Skipping upload.")
def check_resource_usage():
"""Monitors and manages resource usage (RAM, CPU, GPU)."""
# RAM usage
ram_percent = psutil.virtual_memory().percent
if ram_percent > 90: # If RAM usage exceeds 90%
print("WARNING: High RAM usage detected. Clearing cache...")
torch.cuda.empty_cache() # Clear GPU cache
gc.collect() # Force garbage collection
if ram_percent > 95: # If RAM usage still exceeds 95%
print("CRITICAL: Extremely high RAM usage. Terminating processes...")
os.kill(os.getpid(), 9) # Terminate the script
# CPU usage
cpu_percent = psutil.cpu_percent(interval=1)
if cpu_percent > 90:
print("WARNING: High CPU usage detected. Reducing workload...")
# Implement strategies to reduce CPU load, such as:
# - Decreasing batch size in training loops
# - Skipping a training step
# - Limiting the number of parallel processes
# GPU usage (if applicable)
if torch.cuda.is_available():
gpu_memory = torch.cuda.memory_allocated() / 1024**2 # In MB
if gpu_memory > torch.cuda.get_device_properties(0).total_memory * 0.9:
print("WARNING: High GPU memory usage detected. Clearing cache...")
torch.cuda.empty_cache()
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |