Spaces:
Runtime error
Runtime error
File size: 6,242 Bytes
7fa4c88 3eeafd2 9f559e5 365f24d b76928d c9eef99 eb10c67 f8bacf3 b76928d f8bacf3 eb10c67 c9eef99 9116275 c9eef99 7fa4c88 f01dc6b 7fa4c88 4f21ff8 7fa4c88 4f21ff8 c9eef99 4f21ff8 b76928d 7fa4c88 98b623b 4f21ff8 7fa4c88 4f21ff8 7fa4c88 4f21ff8 7fa4c88 b76928d 4f21ff8 7fa4c88 4f21ff8 b76928d 7fa4c88 4f21ff8 7fa4c88 9f559e5 4edd91d eb10c67 9f559e5 eb10c67 b76928d 4a69056 9f559e5 506360c eb10c67 506360c 9f559e5 365f24d 762d575 506360c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
from pydantic import BaseModel
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
import re
import asyncio
import gradio as gr
import os
import spaces
from dotenv import load_dotenv
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import urllib3
import time
import random
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
app = FastAPI()
load_dotenv()
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
global_data = {
'models': {},
'tokens': {
'eos': 'eos_token',
'pad': 'pad_token',
'padding': 'padding_token',
'unk': 'unk_token',
'bos': 'bos_token',
'sep': 'sep_token',
'cls': 'cls_token',
'mask': 'mask_token'
}
}
model_configs = [
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
]
class ModelManager:
def __init__(self):
self.models = {}
def load_model(self, model_config):
if model_config['name'] not in self.models:
try:
self.models[model_config['name']] = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'], use_auth_token=HUGGINGFACE_TOKEN)
except Exception as e:
print(f"Error loading model {model_config['name']}: {e}")
pass # Add pass to handle exceptions during model loading
def load_all_models(self):
with ThreadPoolExecutor() as executor:
for config in model_configs:
executor.submit(self.load_model, config)
return self.models
model_manager = ModelManager()
global_data['models'] = model_manager.load_all_models()
class ChatRequest(BaseModel):
message: str
def normalize_input(input_text):
return input_text.strip()
def remove_duplicates(text):
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
text = text.replace('[/INST]', '')
lines = text.split('\n')
unique_lines = []
seen_lines = set()
for line in lines:
if line not in seen_lines:
unique_lines.append(line)
seen_lines.add(line)
return '\n'.join(unique_lines)
@spaces.GPU(queue=False, idle_timeout=0, timeout=0)
def generate_model_response(model, inputs):
try:
response = model(inputs)
return remove_duplicates(response['choices'][0]['text'])
except Exception as e:
if "You have exceeded your GPU quota" in str(e):
time.sleep(random.uniform(1, 3))
try:
response = model(inputs)
return remove_duplicates(response['choices'][0]['text'])
except Exception as e2:
print(f"Error generating model response (after retry): {e2}")
pass # Add pass to handle exceptions during retry
return ""
else:
print(f"Error generating model response: {e}")
pass # Add pass to handle other exceptions
return ""
def remove_repetitive_responses(responses):
unique_responses = {}
for response in responses:
if response['model'] not in unique_responses:
unique_responses[response['model']] = response['response']
return unique_responses
async def process_message(message):
inputs = normalize_input(message)
with ThreadPoolExecutor() as executor:
futures = [
executor.submit(generate_model_response, model, inputs)
for model in global_data['models'].values()
]
responses = [{'model': model_name, 'response': future.result()} for model_name, future in zip(global_data['models'].keys(), as_completed(futures))]
unique_responses = remove_repetitive_responses(responses)
formatted_response = ""
for model, response in unique_responses.items():
formatted_response += f"**{model}:**\n{response}\n\n"
return formatted_response
@app.post("/generate_multimodel")
async def api_generate_multimodel(request: Request):
while True:
try:
data = await request.json()
message = data["message"]
formatted_response = await process_message(message)
return JSONResponse({"response": formatted_response})
except Exception as e:
print(f"Error in API request handling: {e}")
pass # Add pass to handle exceptions in API request handling
time.sleep(0)
iface = gr.Interface(
fn=process_message,
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
outputs=gr.Markdown(),
title="Multi-Model LLM API",
description="Enter a message and get responses from multiple LLMs.",
)
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
iface.launch(server_port=port) |