Spaces:
Runtime error
Runtime error
yiyixuxu
commited on
Commit
·
8b1feb9
1
Parent(s):
84ee260
initial commit
Browse files- app.py +159 -0
- packages.txt +2 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import clip
|
3 |
+
import cv2, youtube_dl
|
4 |
+
from PIL import Image,ImageDraw, ImageFont
|
5 |
+
import os
|
6 |
+
from functools import partial
|
7 |
+
from multiprocessing.pool import Pool
|
8 |
+
import shutil
|
9 |
+
from pathlib import Path
|
10 |
+
import numpy as np
|
11 |
+
import datetime
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
|
15 |
+
# load model and preprocess
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
model, preprocess = clip.load("ViT-B/32")
|
18 |
+
|
19 |
+
def select_video_format(url, format_note='480p', ext='mp4'):
|
20 |
+
defaults = ['480p', '360p','240p','144p']
|
21 |
+
ydl_opts = {}
|
22 |
+
ydl = youtube_dl.YoutubeDL(ydl_opts)
|
23 |
+
info_dict = ydl.extract_info(url, download=False)
|
24 |
+
formats = info_dict.get('formats', None)
|
25 |
+
available_format_notes = set([f['format_note'] for f in formats])
|
26 |
+
if format_note not in available_format_notes:
|
27 |
+
format_note = [d for d in defaults if d in available_format_notes][0]
|
28 |
+
formats = [f for f in formats if f['format_note'] == format_note and f['ext'] == ext]
|
29 |
+
format = formats[0]
|
30 |
+
format_id = format.get('format_id', None)
|
31 |
+
fps = format.get('fps', None)
|
32 |
+
print(f'format selected: {format}')
|
33 |
+
return(format_id, fps)
|
34 |
+
|
35 |
+
def download_video(url,format_id):
|
36 |
+
ydl_opts = {
|
37 |
+
'format':format_id,
|
38 |
+
'outtmpl': "%(id)s.%(ext)s"}
|
39 |
+
meta = youtube_dl.YoutubeDL(ydl_opts).extract_info(url)
|
40 |
+
save_location = meta['id'] + '.' + meta['ext']
|
41 |
+
return(save_location)
|
42 |
+
|
43 |
+
def read_frames(dest_path):
|
44 |
+
original_images = []
|
45 |
+
images = []
|
46 |
+
for filename in sorted(dest_path.glob('*.jpg'),key=lambda p: int(p.stem)):
|
47 |
+
image = Image.open(filename).convert("RGB")
|
48 |
+
original_images.append(image)
|
49 |
+
images.append(preprocess(image))
|
50 |
+
return original_images, images
|
51 |
+
|
52 |
+
def process_video_parallel(url, skip_frames, dest_path, process_number):
|
53 |
+
cap = cv2.VideoCapture(url)
|
54 |
+
num_processes = os.cpu_count()
|
55 |
+
chunks_per_process = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) // (num_processes * skip_frames)
|
56 |
+
count = skip_frames * chunks_per_process * process_number
|
57 |
+
print(f"worker: {process_number}, process frames {count} ~ {skip_frames * chunks_per_process * (process_number + 1)}")
|
58 |
+
while count < skip_frames * chunks_per_process * (process_number + 1) :
|
59 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, count)
|
60 |
+
ret, frame = cap.read()
|
61 |
+
if not ret:
|
62 |
+
break
|
63 |
+
filename =f"{dest_path}/{count}.jpg"
|
64 |
+
cv2.imwrite(filename, frame)
|
65 |
+
count += skip_frames # Skip 300 frames i.e. 10 seconds for 30 fps
|
66 |
+
cap.release()
|
67 |
+
|
68 |
+
|
69 |
+
def vid2frames(url, sampling_interval=1, ext='mp4'):
|
70 |
+
# create folder for extracted frames - if folder exists, delete and create a new one
|
71 |
+
dest_path = Path('frames')
|
72 |
+
try:
|
73 |
+
dest_path.mkdir(parents=True)
|
74 |
+
except FileExistsError:
|
75 |
+
shutil.rmtree(dest_path)
|
76 |
+
dest_path.mkdir(parents=True)
|
77 |
+
# figure out the format for download,
|
78 |
+
# by default select 480p, if not available, choose the best format available
|
79 |
+
# mp4
|
80 |
+
format_id, fps = select_video_format(url, format_note='480p', ext='mp4')
|
81 |
+
# download the video
|
82 |
+
video = download_video(url,format_id)
|
83 |
+
# calculate skip_frames
|
84 |
+
try:
|
85 |
+
skip_frames = int(fps * sampling_interval)
|
86 |
+
except:
|
87 |
+
skip_frames = int(30 * sampling_interval)
|
88 |
+
print(f'video saved at: {video}, fps:{fps}, skip_frames: {skip_frames}')
|
89 |
+
# extract video frames at given sampling interval with multiprocessing -
|
90 |
+
print('extracting frames...')
|
91 |
+
n_workers = os.cpu_count()
|
92 |
+
with Pool(n_workers) as pool:
|
93 |
+
pool.map(partial(process_video_parallel, video, skip_frames, dest_path), range(n_workers))
|
94 |
+
return dest_path
|
95 |
+
|
96 |
+
|
97 |
+
def captioned_strip(images, caption=None, times=None, rows=1):
|
98 |
+
increased_h = 0 if caption is None else 30
|
99 |
+
w, h = images[0].size[0], images[0].size[1]
|
100 |
+
img = Image.new("RGB", (len(images) * w // rows, h * rows + increased_h))
|
101 |
+
for i, img_ in enumerate(images):
|
102 |
+
img.paste(img_, (i // rows * w, increased_h + (i % rows) * h))
|
103 |
+
if caption is not None:
|
104 |
+
draw = ImageDraw.Draw(img)
|
105 |
+
font = ImageFont.truetype(
|
106 |
+
"/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 16
|
107 |
+
)
|
108 |
+
font_small = ImageFont.truetype(
|
109 |
+
"/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 12
|
110 |
+
)
|
111 |
+
draw.text((20, 3), caption, (255, 255, 255), font=font)
|
112 |
+
for i,ts in enumerate(times):
|
113 |
+
draw.text((
|
114 |
+
(i % rows) * w + 40 , #column poistion
|
115 |
+
i // rows * h + 33) # row position
|
116 |
+
, ts,
|
117 |
+
(255, 255, 255), font=font_small)
|
118 |
+
return img
|
119 |
+
|
120 |
+
def run_inference(url, sampling_interval, search_query):
|
121 |
+
path_frames = vid2frames(url,sampling_interval)
|
122 |
+
original_images, images = read_frames(path_frames)
|
123 |
+
image_input = torch.tensor(np.stack(images)).to(device)
|
124 |
+
with torch.no_grad():
|
125 |
+
image_features = model.encode_image(image_input)
|
126 |
+
text_features = model.encode_text(clip.tokenize(search_query).to(device))
|
127 |
+
|
128 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
129 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
130 |
+
|
131 |
+
similarity = (100.0 * image_features @ text_features.T)
|
132 |
+
values, indices = similarity.topk(4, dim=0)
|
133 |
+
|
134 |
+
best_frames = [original_images[ind] for ind in indices]
|
135 |
+
times = [f'{datetime.timedelta(seconds = ind[0].item() * sampling_interval)}' for ind in indices]
|
136 |
+
image_output = captioned_strip(best_frames,search_query, times,2)
|
137 |
+
title = search_query
|
138 |
+
return(title, image_output)
|
139 |
+
|
140 |
+
inputs = [gr.inputs.Textbox(label="Give us the link to your youtube video!"),
|
141 |
+
gr.Number(5),
|
142 |
+
gr.inputs.Textbox(label="What do you want to search?")]
|
143 |
+
outputs = [
|
144 |
+
gr.outputs.HTML(label=""), # To be used as title
|
145 |
+
gr.outputs.Image(label=""),
|
146 |
+
]
|
147 |
+
|
148 |
+
gr.Interface(
|
149 |
+
run_inference,
|
150 |
+
inputs=inputs,
|
151 |
+
outputs=outputs,
|
152 |
+
title="It Happened One Frame",
|
153 |
+
description='A CLIP-based app that search video frame based on text',
|
154 |
+
examples=[
|
155 |
+
['https://youtu.be/v1rkzUIL8oc', 1, "James Cagney dancing down the stairs"],
|
156 |
+
['https://youtu.be/k4R5wZs8cxI', 1, "James Cagney smashes a grapefruit into Mae Clarke's face"]
|
157 |
+
]
|
158 |
+
).launch(debug=True,enable_queue=True)
|
159 |
+
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
python3-opencv
|
2 |
+
libssl-dev
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/openai/CLIP.git
|
2 |
+
torch
|
3 |
+
youtube_dl
|
4 |
+
opencv-python
|