File size: 12,781 Bytes
7262fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# -*- coding: utf-8 -*-
import os
import time
import numpy as np
import warnings
import random
from omegaconf.listconfig import ListConfig
from webdataset import pipelinefilter
import torch
import torchvision.transforms.functional as TVF
from torchvision.transforms import InterpolationMode
from torchvision.transforms.transforms import _interpolation_modes_from_int
from typing import Sequence

from MeshAnything.miche.michelangelo.utils import instantiate_from_config


def _uid_buffer_pick(buf_dict, rng):
    uid_keys = list(buf_dict.keys())
    selected_uid = rng.choice(uid_keys)
    buf = buf_dict[selected_uid]

    k = rng.randint(0, len(buf) - 1)
    sample = buf[k]
    buf[k] = buf[-1]
    buf.pop()

    if len(buf) == 0:
        del buf_dict[selected_uid]

    return sample


def _add_to_buf_dict(buf_dict, sample):
    key = sample["__key__"]
    uid, uid_sample_id = key.split("_")
    if uid not in buf_dict:
        buf_dict[uid] = []
    buf_dict[uid].append(sample)

    return buf_dict


def _uid_shuffle(data, bufsize=1000, initial=100, rng=None, handler=None):
    """Shuffle the data in the stream.

    This uses a buffer of size `bufsize`. Shuffling at
    startup is less random; this is traded off against
    yielding samples quickly.

    data: iterator
    bufsize: buffer size for shuffling
    returns: iterator
    rng: either random module or random.Random instance

    """
    if rng is None:
        rng = random.Random(int((os.getpid() + time.time()) * 1e9))
    initial = min(initial, bufsize)
    buf_dict = dict()
    current_samples = 0
    for sample in data:
        _add_to_buf_dict(buf_dict, sample)
        current_samples += 1

        if current_samples < bufsize:
            try:
                _add_to_buf_dict(buf_dict, next(data))  # skipcq: PYL-R1708
                current_samples += 1
            except StopIteration:
                pass

        if current_samples >= initial:
            current_samples -= 1
            yield _uid_buffer_pick(buf_dict, rng)

    while current_samples > 0:
        current_samples -= 1
        yield _uid_buffer_pick(buf_dict, rng)


uid_shuffle = pipelinefilter(_uid_shuffle)


class RandomSample(object):
    def __init__(self,
                 num_volume_samples: int = 1024,
                 num_near_samples: int = 1024):

        super().__init__()

        self.num_volume_samples = num_volume_samples
        self.num_near_samples = num_near_samples

    def __call__(self, sample):
        rng = np.random.default_rng()

        # 1. sample surface input
        total_surface = sample["surface"]
        ind = rng.choice(total_surface.shape[0], replace=False)
        surface = total_surface[ind]

        # 2. sample volume/near geometric points
        vol_points = sample["vol_points"]
        vol_label = sample["vol_label"]
        near_points = sample["near_points"]
        near_label = sample["near_label"]

        ind = rng.choice(vol_points.shape[0], self.num_volume_samples, replace=False)
        vol_points = vol_points[ind]
        vol_label = vol_label[ind]
        vol_points_labels = np.concatenate([vol_points, vol_label[:, np.newaxis]], axis=1)

        ind = rng.choice(near_points.shape[0], self.num_near_samples, replace=False)
        near_points = near_points[ind]
        near_label = near_label[ind]
        near_points_labels = np.concatenate([near_points, near_label[:, np.newaxis]], axis=1)

        # concat sampled volume and near points
        geo_points = np.concatenate([vol_points_labels, near_points_labels], axis=0)

        sample = {
            "surface": surface,
            "geo_points": geo_points
        }

        return sample


class SplitRandomSample(object):
    def __init__(self,
                 use_surface_sample: bool = False,
                 num_surface_samples: int = 4096,
                 num_volume_samples: int = 1024,
                 num_near_samples: int = 1024):

        super().__init__()

        self.use_surface_sample = use_surface_sample
        self.num_surface_samples = num_surface_samples
        self.num_volume_samples = num_volume_samples
        self.num_near_samples = num_near_samples

    def __call__(self, sample):

        rng = np.random.default_rng()

        # 1. sample surface input
        surface = sample["surface"]

        if self.use_surface_sample:
            replace = surface.shape[0] < self.num_surface_samples
            ind = rng.choice(surface.shape[0], self.num_surface_samples, replace=replace)
            surface = surface[ind]

        # 2. sample volume/near geometric points
        vol_points = sample["vol_points"]
        vol_label = sample["vol_label"]
        near_points = sample["near_points"]
        near_label = sample["near_label"]

        ind = rng.choice(vol_points.shape[0], self.num_volume_samples, replace=False)
        vol_points = vol_points[ind]
        vol_label = vol_label[ind]
        vol_points_labels = np.concatenate([vol_points, vol_label[:, np.newaxis]], axis=1)

        ind = rng.choice(near_points.shape[0], self.num_near_samples, replace=False)
        near_points = near_points[ind]
        near_label = near_label[ind]
        near_points_labels = np.concatenate([near_points, near_label[:, np.newaxis]], axis=1)

        # concat sampled volume and near points
        geo_points = np.concatenate([vol_points_labels, near_points_labels], axis=0)

        sample = {
            "surface": surface,
            "geo_points": geo_points
        }

        return sample


class FeatureSelection(object):

    VALID_SURFACE_FEATURE_DIMS = {
        "none": [0, 1, 2],                              # xyz
        "watertight_normal": [0, 1, 2, 3, 4, 5],        # xyz, normal
        "normal": [0, 1, 2, 6, 7, 8]
    }

    def __init__(self, surface_feature_type: str):

        self.surface_feature_type = surface_feature_type
        self.surface_dims = self.VALID_SURFACE_FEATURE_DIMS[surface_feature_type]

    def __call__(self, sample):
        sample["surface"] = sample["surface"][:, self.surface_dims]
        return sample


class AxisScaleTransform(object):
    def __init__(self, interval=(0.75, 1.25), jitter=True, jitter_scale=0.005):
        assert isinstance(interval, (tuple, list, ListConfig))
        self.interval = interval
        self.min_val = interval[0]
        self.max_val = interval[1]
        self.inter_size = interval[1] - interval[0]
        self.jitter = jitter
        self.jitter_scale = jitter_scale

    def __call__(self, sample):

        surface = sample["surface"][..., 0:3]
        geo_points = sample["geo_points"][..., 0:3]

        scaling = torch.rand(1, 3) * self.inter_size + self.min_val
        # print(scaling)
        surface = surface * scaling
        geo_points = geo_points * scaling

        scale = (1 / torch.abs(surface).max().item()) * 0.999999
        surface *= scale
        geo_points *= scale

        if self.jitter:
            surface += self.jitter_scale * torch.randn_like(surface)
            surface.clamp_(min=-1.015, max=1.015)

        sample["surface"][..., 0:3] = surface
        sample["geo_points"][..., 0:3] = geo_points

        return sample


class ToTensor(object):

    def __init__(self, tensor_keys=("surface", "geo_points", "tex_points")):
        self.tensor_keys = tensor_keys

    def __call__(self, sample):
        for key in self.tensor_keys:
            if key not in sample:
                continue

            sample[key] = torch.tensor(sample[key], dtype=torch.float32)

        return sample


class AxisScale(object):
    def __init__(self, interval=(0.75, 1.25), jitter=True, jitter_scale=0.005):
        assert isinstance(interval, (tuple, list, ListConfig))
        self.interval = interval
        self.jitter = jitter
        self.jitter_scale = jitter_scale

    def __call__(self, surface, *args):
        scaling = torch.rand(1, 3) * 0.5 + 0.75
        # print(scaling)
        surface = surface * scaling
        scale = (1 / torch.abs(surface).max().item()) * 0.999999
        surface *= scale

        args_outputs = []
        for _arg in args:
            _arg = _arg * scaling * scale
            args_outputs.append(_arg)

        if self.jitter:
            surface += self.jitter_scale * torch.randn_like(surface)
            surface.clamp_(min=-1, max=1)

        if len(args) == 0:
            return surface
        else:
            return surface, *args_outputs


class RandomResize(torch.nn.Module):
    """Apply randomly Resize with a given probability."""

    def __init__(
        self,
        size,
        resize_radio=(0.5, 1),
        allow_resize_interpolations=(InterpolationMode.BICUBIC, InterpolationMode.BILINEAR, InterpolationMode.BILINEAR),
        interpolation=InterpolationMode.BICUBIC,
        max_size=None,
        antialias=None,
    ):
        super().__init__()
        if not isinstance(size, (int, Sequence)):
            raise TypeError(f"Size should be int or sequence. Got {type(size)}")
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")

        self.size = size
        self.max_size = max_size
        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
                "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
                "Please use InterpolationMode enum."
            )
            interpolation = _interpolation_modes_from_int(interpolation)

        self.interpolation = interpolation
        self.antialias = antialias

        self.resize_radio = resize_radio
        self.allow_resize_interpolations = allow_resize_interpolations

    def random_resize_params(self):
        radio = torch.rand(1) * (self.resize_radio[1] - self.resize_radio[0]) + self.resize_radio[0]

        if isinstance(self.size, int):
            size = int(self.size * radio)
        elif isinstance(self.size, Sequence):
            size = list(self.size)
            size = (int(size[0] * radio), int(size[1] * radio))
        else:
            raise RuntimeError()

        interpolation = self.allow_resize_interpolations[
            torch.randint(low=0, high=len(self.allow_resize_interpolations), size=(1,))
        ]
        return size, interpolation

    def forward(self, img):
        size, interpolation = self.random_resize_params()
        img = TVF.resize(img, size, interpolation, self.max_size, self.antialias)
        img = TVF.resize(img, self.size, self.interpolation, self.max_size, self.antialias)
        return img

    def __repr__(self) -> str:
        detail = f"(size={self.size}, interpolation={self.interpolation.value},"
        detail += f"max_size={self.max_size}, antialias={self.antialias}), resize_radio={self.resize_radio}"
        return f"{self.__class__.__name__}{detail}"


class Compose(object):
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, *args):
        for t in self.transforms:
            args = t(*args)
        return args

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


def identity(*args, **kwargs):
    if len(args) == 1:
        return args[0]
    else:
        return args


def build_transforms(cfg):

    if cfg is None:
        return identity

    transforms = []

    for transform_name, cfg_instance in cfg.items():
        transform_instance = instantiate_from_config(cfg_instance)
        transforms.append(transform_instance)
        print(f"Build transform: {transform_instance}")

    transforms = Compose(transforms)

    return transforms