Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,631 Bytes
6435997 65d9a5d 6435997 d1abb59 67d7dba d1abb59 67d7dba d1abb59 67d7dba d1abb59 6435997 d1abb59 6435997 d1abb59 6435997 d1abb59 6435997 acc6365 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import spaces
import subprocess
# Install flash attention, skipping CUDA build if necessary
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
import os
import torch
import trimesh
from accelerate.utils import set_seed
from accelerate import Accelerator
import numpy as np
import gradio as gr
from main import load_v2
from mesh_to_pc import process_mesh_to_pc
import time
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
from PIL import Image
import io
model = load_v2()
device = torch.device('cuda')
accelerator = Accelerator(
mixed_precision="fp16",
)
model = accelerator.prepare(model)
model.eval()
print("Model loaded to device")
def wireframe_render(mesh):
views = [
(90, 20), (270, 20)
]
mesh.vertices = mesh.vertices[:, [0, 2, 1]]
bounding_box = mesh.bounds
center = mesh.centroid
scale = np.ptp(bounding_box, axis=0).max()
fig = plt.figure(figsize=(10, 10))
# Function to render and return each view as an image
def render_view(mesh, azimuth, elevation):
ax = fig.add_subplot(111, projection='3d')
ax.set_axis_off()
# Extract vertices and faces for plotting
vertices = mesh.vertices
faces = mesh.faces
# Plot faces
ax.add_collection3d(Poly3DCollection(
vertices[faces],
facecolors=(0.8, 0.5, 0.2, 1.0), # Brownish yellow
edgecolors='k',
linewidths=0.5,
))
# Set limits and center the view on the object
ax.set_xlim(center[0] - scale / 2, center[0] + scale / 2)
ax.set_ylim(center[1] - scale / 2, center[1] + scale / 2)
ax.set_zlim(center[2] - scale / 2, center[2] + scale / 2)
# Set view angle
ax.view_init(elev=elevation, azim=azimuth)
# Save the figure to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=300)
plt.clf()
buf.seek(0)
return Image.open(buf)
# Render each view and store in a list
images = [render_view(mesh, az, el) for az, el in views]
# Combine images horizontally
widths, heights = zip(*(i.size for i in images))
total_width = sum(widths)
max_height = max(heights)
combined_image = Image.new('RGBA', (total_width, max_height))
x_offset = 0
for img in images:
combined_image.paste(img, (x_offset, 0))
x_offset += img.width
# Save the combined image
save_path = f"combined_mesh_view_{int(time.time())}.png"
combined_image.save(save_path)
plt.close(fig)
return save_path
@spaces.GPU(duration=360)
def do_inference(input_3d, sample_seed=0, do_sampling=False, do_marching_cubes=False):
set_seed(sample_seed)
print("Seed value:", sample_seed)
input_mesh = trimesh.load(input_3d)
pc_list, mesh_list = process_mesh_to_pc([input_mesh], marching_cubes = do_marching_cubes)
pc_normal = pc_list[0] # 4096, 6
mesh = mesh_list[0]
vertices = mesh.vertices
pc_coor = pc_normal[:, :3]
normals = pc_normal[:, 3:]
bounds = np.array([vertices.min(axis=0), vertices.max(axis=0)])
# scale mesh and pc
vertices = vertices - (bounds[0] + bounds[1])[None, :] / 2
vertices = vertices / (bounds[1] - bounds[0]).max()
mesh.vertices = vertices
pc_coor = pc_coor - (bounds[0] + bounds[1])[None, :] / 2
pc_coor = pc_coor / (bounds[1] - bounds[0]).max()
mesh.merge_vertices()
mesh.update_faces(mesh.nondegenerate_faces())
mesh.update_faces(mesh.unique_faces())
mesh.remove_unreferenced_vertices()
mesh.fix_normals()
if mesh.visual.vertex_colors is not None:
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
mesh.visual.vertex_colors = np.tile(orange_color, (mesh.vertices.shape[0], 1))
else:
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
mesh.visual.vertex_colors = np.tile(orange_color, (mesh.vertices.shape[0], 1))
input_save_name = f"processed_input_{int(time.time())}.obj"
mesh.export(input_save_name)
input_render_res = wireframe_render(mesh)
pc_coor = pc_coor / np.abs(pc_coor).max() * 0.99 # input should be from -1 to 1
assert (np.linalg.norm(normals, axis=-1) > 0.99).all(), "normals should be unit vectors, something wrong"
normalized_pc_normal = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)
input = torch.tensor(normalized_pc_normal, dtype=torch.float16, device=device)[None]
print("Data loaded")
# with accelerator.autocast():
with accelerator.autocast():
outputs = model(input, do_sampling)
print("Model inference done")
recon_mesh = outputs[0]
valid_mask = torch.all(~torch.isnan(recon_mesh.reshape((-1, 9))), dim=1)
recon_mesh = recon_mesh[valid_mask] # nvalid_face x 3 x 3
vertices = recon_mesh.reshape(-1, 3).cpu()
vertices_index = np.arange(len(vertices)) # 0, 1, ..., 3 x face
triangles = vertices_index.reshape(-1, 3)
artist_mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, force="mesh",
merge_primitives=True)
artist_mesh.merge_vertices()
artist_mesh.update_faces(artist_mesh.nondegenerate_faces())
artist_mesh.update_faces(artist_mesh.unique_faces())
artist_mesh.remove_unreferenced_vertices()
artist_mesh.fix_normals()
if artist_mesh.visual.vertex_colors is not None:
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
artist_mesh.visual.vertex_colors = np.tile(orange_color, (artist_mesh.vertices.shape[0], 1))
else:
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
artist_mesh.visual.vertex_colors = np.tile(orange_color, (artist_mesh.vertices.shape[0], 1))
num_faces = len(artist_mesh.faces)
brown_color = np.array([165, 42, 42, 255], dtype=np.uint8)
face_colors = np.tile(brown_color, (num_faces, 1))
artist_mesh.visual.face_colors = face_colors
# add time stamp to avoid cache
save_name = f"output_{int(time.time())}.obj"
artist_mesh.export(save_name)
output_render = wireframe_render(artist_mesh)
return input_save_name, input_render_res, save_name, output_render
_HEADER_ = '''
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/buaacyw/MeshAnything' target='_blank'><b>MeshAnything V2: Artist-Created Mesh Generation With Adjacent Mesh Tokenization</b></a></h2>
**MeshAnythingV2** converts any 3D representation into meshes created by human artists, i.e., Artist-Created Meshes (AMs).
Code: <a href='https://github.com/buaacyw/MeshAnythingV2' target='_blank'>GitHub</a>. Arxiv Paper: <a href='https://arxiv.org/abs/2406.10163' target='_blank'>ArXiv</a>.
❗️❗️❗️**Important Notes:**
- Gradio doesn't support interactive wireframe rendering currently. For interactive mesh visualization, please use download the obj file and open it with MeshLab or https://3dviewer.net/.
- The input mesh will be normalized to a unit bounding box. The up vector of the input mesh should be +Y for better results. Click **Preprocess with Marching Cubes** if the input mesh is a manually created mesh.
- Limited by computational resources, MeshAnything is trained on meshes with fewer than 1600 faces and cannot generate meshes with more than 1600 faces. The shape of the input mesh should be sharp enough; otherwise, it will be challenging to represent it with only 1600 faces. Thus, feed-forward image-to-3D methods may often produce bad results due to insufficient shape quality.
- For point cloud input, please refer to our github repo <a href='https://github.com/buaacyw/MeshAnythingV2' target='_blank'>GitHub</a>.
'''
_CITE_ = r"""
If MeshAnythingV2 is helpful, please help to ⭐ the <a href='https://github.com/buaacyw/MeshAnythingV2' target='_blank'>Github Repo</a>. Thanks!
---
📋 **License**
MIT LICENSE.
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>yiwen002@e.ntu.edu.sg</b>.
"""
output_model_obj = gr.Model3D(
label="Generated Mesh (OBJ Format)",
clear_color=[1, 1, 1, 1],
)
preprocess_model_obj = gr.Model3D(
label="Processed Input Mesh (OBJ Format)",
clear_color=[1, 1, 1, 1],
)
input_image_render = gr.Image(
label="Wireframe Render of Processed Input Mesh",
)
output_image_render = gr.Image(
label="Wireframe Render of Generated Mesh",
)
with (gr.Blocks() as demo):
gr.Markdown(_HEADER_)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_3d = gr.Model3D(
label="Input Mesh",
clear_color=[1,1,1,1],
)
with gr.Row():
with gr.Group():
do_marching_cubes = gr.Checkbox(label="Preprocess with Marching Cubes", value=False)
do_sampling = gr.Checkbox(label="Random Sampling", value=False)
sample_seed = gr.Number(value=0, label="Seed Value", precision=0)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
mesh_examples = gr.Examples(
examples=[
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
],
inputs=input_3d,
outputs=[preprocess_model_obj, input_image_render, output_model_obj, output_image_render],
fn=do_inference,
cache_examples = False,
examples_per_page=10
)
with gr.Column():
with gr.Row():
input_image_render.render()
with gr.Row():
with gr.Tab("OBJ"):
preprocess_model_obj.render()
with gr.Row():
output_image_render.render()
with gr.Row():
with gr.Tab("OBJ"):
output_model_obj.render()
with gr.Row():
gr.Markdown('''Try click random sampling and different <b>Seed Value</b> if the result is unsatisfying''')
gr.Markdown(_CITE_)
mv_images = gr.State()
submit.click(
fn=do_inference,
inputs=[input_3d, sample_seed, do_sampling, do_marching_cubes],
outputs=[preprocess_model_obj, input_image_render, output_model_obj, output_image_render],
)
demo.launch(share=True) |