Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
import torch | |
import numpy as np | |
def worker_init_fn(_): | |
worker_info = torch.utils.data.get_worker_info() | |
worker_id = worker_info.id | |
# dataset = worker_info.dataset | |
# split_size = dataset.num_records // worker_info.num_workers | |
# # reset num_records to the true number to retain reliable length information | |
# dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size] | |
# current_id = np.random.choice(len(np.random.get_state()[1]), 1) | |
# return np.random.seed(np.random.get_state()[1][current_id] + worker_id) | |
return np.random.seed(np.random.get_state()[1][0] + worker_id) | |
def collation_fn(samples, combine_tensors=True, combine_scalars=True): | |
""" | |
Args: | |
samples (list[dict]): | |
combine_tensors: | |
combine_scalars: | |
Returns: | |
""" | |
result = {} | |
keys = samples[0].keys() | |
for key in keys: | |
result[key] = [] | |
for sample in samples: | |
for key in keys: | |
val = sample[key] | |
result[key].append(val) | |
for key in keys: | |
val_list = result[key] | |
if isinstance(val_list[0], (int, float)): | |
if combine_scalars: | |
result[key] = np.array(result[key]) | |
elif isinstance(val_list[0], torch.Tensor): | |
if combine_tensors: | |
result[key] = torch.stack(val_list) | |
elif isinstance(val_list[0], np.ndarray): | |
if combine_tensors: | |
result[key] = np.stack(val_list) | |
return result | |