Spaces:
Runtime error
Runtime error
File size: 11,505 Bytes
de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import logging
import warnings
warnings.filterwarnings("ignore")
logging.getLogger("lightning").setLevel(logging.ERROR)
logging.getLogger("trimesh").setLevel(logging.ERROR)
import argparse
import os
import torch
from termcolor import colored
from tqdm.auto import tqdm
from apps.IFGeo import IFGeo
from apps.Normal import Normal
from lib.common.BNI import BNI
from lib.common.BNI_utils import save_normal_tensor
from lib.common.config import cfg
from lib.common.voxelize import VoxelGrid
from lib.dataset.EvalDataset import EvalDataset
from lib.dataset.Evaluator import Evaluator
from lib.dataset.mesh_util import *
torch.backends.cudnn.benchmark = True
speed_analysis = False
if __name__ == "__main__":
if speed_analysis:
import cProfile
import pstats
profiler = cProfile.Profile()
profiler.enable()
# loading cfg file
parser = argparse.ArgumentParser()
parser.add_argument("-gpu", "--gpu_device", type=int, default=0)
parser.add_argument("-ifnet", action="store_true")
parser.add_argument("-cfg", "--config", type=str, default="./configs/econ.yaml")
args = parser.parse_args()
# cfg read and merge
cfg.merge_from_file(args.config)
device = torch.device("cuda:0")
cfg_test_list = [
"dataset.rotation_num",
3,
"bni.use_smpl",
["hand"],
"bni.use_ifnet",
args.ifnet,
"bni.cut_intersection",
True,
]
# # if w/ RenderPeople+CAPE
# cfg_test_list += ["dataset.types", ["cape", "renderpeople"], "dataset.scales", [100.0, 1.0]]
# if only w/ CAPE
cfg_test_list += ["dataset.types", ["cape"], "dataset.scales", [100.0]]
cfg.merge_from_list(cfg_test_list)
cfg.freeze()
# load normal model
normal_net = Normal.load_from_checkpoint(
cfg=cfg, checkpoint_path=cfg.normal_path, map_location=device, strict=False
)
normal_net = normal_net.to(device)
normal_net.netG.eval()
print(
colored(
f"Resume Normal Estimator from {Format.start} {cfg.normal_path} {Format.end}", "green"
)
)
# SMPLX object
SMPLX_object = SMPLX()
dataset = EvalDataset(cfg=cfg, device=device)
evaluator = Evaluator(device=device)
export_dir = osp.join(cfg.results_path, cfg.name, "IF-Net+" if cfg.bni.use_ifnet else "SMPL-X")
print(colored(f"Dataset Size: {len(dataset)}", "green"))
if cfg.bni.use_ifnet:
# load IFGeo model
ifnet = IFGeo.load_from_checkpoint(
cfg=cfg, checkpoint_path=cfg.ifnet_path, map_location=device, strict=False
)
ifnet = ifnet.to(device)
ifnet.netG.eval()
print(colored(f"Resume IF-Net+ from {Format.start} {cfg.ifnet_path} {Format.end}", "green"))
print(colored(f"Complete with {Format.start} IF-Nets+ (Implicit) {Format.end}", "green"))
else:
print(colored(f"Complete with {Format.start} SMPL-X (Explicit) {Format.end}", "green"))
pbar = tqdm(dataset)
benchmark = {}
for data in pbar:
for key in data.keys():
if torch.is_tensor(data[key]):
data[key] = data[key].unsqueeze(0).to(device)
is_smplx = True if 'smplx_path' in data.keys() else False
# filenames and makedirs
current_name = f"{data['dataset']}-{data['subject']}-{data['rotation']:03d}"
current_dir = osp.join(export_dir, data['dataset'], data['subject'])
os.makedirs(current_dir, exist_ok=True)
final_path = osp.join(current_dir, f"{current_name}_final.obj")
if not osp.exists(final_path):
in_tensor = data.copy()
batch_smpl_verts = in_tensor["smpl_verts"].detach()
batch_smpl_verts *= torch.tensor([1.0, -1.0, 1.0]).to(device)
batch_smpl_faces = in_tensor["smpl_faces"].detach()
in_tensor["depth_F"], in_tensor["depth_B"] = dataset.render_depth(
batch_smpl_verts, batch_smpl_faces
)
with torch.no_grad():
in_tensor["normal_F"], in_tensor["normal_B"] = normal_net.netG(in_tensor)
smpl_mesh = trimesh.Trimesh(
batch_smpl_verts.cpu().numpy()[0],
batch_smpl_faces.cpu().numpy()[0]
)
side_mesh = smpl_mesh.copy()
face_mesh = smpl_mesh.copy()
hand_mesh = smpl_mesh.copy()
smplx_mesh = smpl_mesh.copy()
# save normals, depths and masks
BNI_dict = save_normal_tensor(
in_tensor,
0,
osp.join(current_dir, "BNI/param_dict"),
cfg.bni.thickness if data['dataset'] == 'renderpeople' else 0.0,
)
# BNI process
BNI_object = BNI(
dir_path=osp.join(current_dir, "BNI"),
name=current_name,
BNI_dict=BNI_dict,
cfg=cfg.bni,
device=device
)
BNI_object.extract_surface(False)
if is_smplx:
side_mesh = apply_face_mask(side_mesh, ~SMPLX_object.smplx_eyeball_fid_mask)
if cfg.bni.use_ifnet:
# mesh completion via IF-net
in_tensor.update(
dataset.depth_to_voxel({
"depth_F": BNI_object.F_depth.unsqueeze(0).to(device), "depth_B":
BNI_object.B_depth.unsqueeze(0).to(device)
})
)
occupancies = VoxelGrid.from_mesh(side_mesh, cfg.vol_res, loc=[
0,
] * 3, scale=2.0).data.transpose(2, 1, 0)
occupancies = np.flip(occupancies, axis=1)
in_tensor["body_voxels"] = torch.tensor(occupancies.copy()
).float().unsqueeze(0).to(device)
with torch.no_grad():
sdf = ifnet.reconEngine(netG=ifnet.netG, batch=in_tensor)
verts_IF, faces_IF = ifnet.reconEngine.export_mesh(sdf)
if ifnet.clean_mesh_flag:
verts_IF, faces_IF = clean_mesh(verts_IF, faces_IF)
side_mesh_path = osp.join(current_dir, f"{current_name}_IF.obj")
side_mesh = remesh_laplacian(trimesh.Trimesh(verts_IF, faces_IF), side_mesh_path)
full_lst = []
if "hand" in cfg.bni.use_smpl:
# only hands
if is_smplx:
hand_mesh = apply_vertex_mask(hand_mesh, SMPLX_object.smplx_mano_vertex_mask)
else:
hand_mesh = apply_vertex_mask(hand_mesh, SMPLX_object.smpl_mano_vertex_mask)
# remove hand neighbor triangles
BNI_object.F_B_trimesh = part_removal(
BNI_object.F_B_trimesh,
hand_mesh,
cfg.bni.hand_thres,
device,
smplx_mesh,
region="hand"
)
side_mesh = part_removal(
side_mesh, hand_mesh, cfg.bni.hand_thres, device, smplx_mesh, region="hand"
)
# hand_mesh.export(osp.join(current_dir, f"{current_name}_hands.obj"))
full_lst += [hand_mesh]
full_lst += [BNI_object.F_B_trimesh]
# initial side_mesh could be SMPLX or IF-net
side_mesh = part_removal(
side_mesh, sum(full_lst), 2e-2, device, smplx_mesh, region="", clean=False
)
full_lst += [side_mesh]
if cfg.bni.use_poisson:
final_mesh = poisson(
sum(full_lst),
final_path,
cfg.bni.poisson_depth,
)
else:
final_mesh = sum(full_lst)
final_mesh.export(final_path)
else:
final_mesh = trimesh.load(final_path)
# evaluation
metric_path = osp.join(export_dir, "metric.npy")
if osp.exists(metric_path):
benchmark = np.load(metric_path, allow_pickle=True).item()
if benchmark == {} or data["dataset"] not in benchmark.keys(
) or f"{data['subject']}-{data['rotation']}" not in benchmark[data["dataset"]]["subject"]:
result_eval = {
"verts_gt": data["verts"][0],
"faces_gt": data["faces"][0],
"verts_pr": final_mesh.vertices,
"faces_pr": final_mesh.faces,
"calib": data["calib"][0],
}
evaluator.set_mesh(result_eval, scale=False)
chamfer, p2s = evaluator.calculate_chamfer_p2s(num_samples=1000)
nc = evaluator.calculate_normal_consist(osp.join(current_dir, f"{current_name}_nc.png"))
if data["dataset"] not in benchmark.keys():
benchmark[data["dataset"]] = {
"chamfer": [chamfer.item()],
"p2s": [p2s.item()],
"nc": [nc.item()],
"subject": [f"{data['subject']}-{data['rotation']}"],
"total": 1,
}
else:
benchmark[data["dataset"]]["chamfer"] += [chamfer.item()]
benchmark[data["dataset"]]["p2s"] += [p2s.item()]
benchmark[data["dataset"]]["nc"] += [nc.item()]
benchmark[data["dataset"]]["subject"] += [f"{data['subject']}-{data['rotation']}"]
benchmark[data["dataset"]]["total"] += 1
np.save(metric_path, benchmark, allow_pickle=True)
else:
subject_idx = benchmark[data["dataset"]
]["subject"].index(f"{data['subject']}-{data['rotation']}")
chamfer = torch.tensor(benchmark[data["dataset"]]["chamfer"][subject_idx])
p2s = torch.tensor(benchmark[data["dataset"]]["p2s"][subject_idx])
nc = torch.tensor(benchmark[data["dataset"]]["nc"][subject_idx])
pbar.set_description(
f"{current_name} | {chamfer.item():.3f} | {p2s.item():.3f} | {nc.item():.4f}"
)
for dataset in benchmark.keys():
for metric in ["chamfer", "p2s", "nc"]:
print(
f"{dataset}-{metric}: {sum(benchmark[dataset][metric])/benchmark[dataset]['total']:.4f}"
)
if cfg.bni.use_ifnet:
print(colored("Finish evaluating on ECON_IF", "green"))
else:
print(colored("Finish evaluating of ECON_EX", "green"))
if speed_analysis:
profiler.disable()
profiler.dump_stats(osp.join(export_dir, "econ.stats"))
stats = pstats.Stats(osp.join(export_dir, "econ.stats"))
stats.sort_stats("cumtime").print_stats(10)
|