Spaces:
Runtime error
Runtime error
File size: 25,400 Bytes
da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
import torch
import trimesh
import cv2, os
from PIL import Image
import os.path as osp
import cupy as cp
import numpy as np
from cupyx.scipy.sparse import csr_matrix, vstack, hstack, spdiags, diags, coo_matrix
from cupyx.scipy.sparse.linalg import cg
from tqdm.auto import tqdm
from lib.dataset.mesh_util import clean_floats
def find_max_list(lst):
list_len = [len(i) for i in lst]
max_id = np.argmax(np.array(list_len))
return lst[max_id]
def interpolate_pts(pts, diff_ids):
pts_extend = np.around((pts[diff_ids] + pts[diff_ids - 1]) * 0.5).astype(np.int32)
pts = np.insert(pts, diff_ids, pts_extend, axis=0)
return pts
def align_pts(pts1, pts2):
diff_num = abs(len(pts1) - len(pts2))
diff_ids = np.sort(np.random.choice(min(len(pts2), len(pts1)), diff_num, replace=True))
if len(pts1) > len(pts2):
pts2 = interpolate_pts(pts2, diff_ids)
elif len(pts2) > len(pts1):
pts1 = interpolate_pts(pts1, diff_ids)
else:
pass
return pts1, pts2
def repeat_pts(pts1, pts2):
coverage_mask = ((pts1[:, None, :] == pts2[None, :, :]).sum(axis=2) == 2.).any(axis=1)
return coverage_mask
def find_contour(mask, method='all'):
if method == 'all':
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
else:
contours, _ = cv2.findContours(
mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
contour_cloth = np.array(find_max_list(contours))[:, 0, :]
return contour_cloth
def mean_value_cordinates(inner_pts, contour_pts):
body_edges_a = np.sqrt(((inner_pts[:, None] - contour_pts[None, :])**2).sum(axis=2))
body_edges_c = np.roll(body_edges_a, shift=-1, axis=1)
body_edges_b = np.sqrt(((contour_pts - np.roll(contour_pts, shift=-1, axis=0))**2).sum(axis=1))
body_edges = np.concatenate(
[
body_edges_a[..., None], body_edges_c[..., None],
np.repeat(body_edges_b[None, :, None], axis=0, repeats=len(inner_pts))
],
axis=-1
)
body_cos = (body_edges[:, :, 0]**2 + body_edges[:, :, 1]**2 -
body_edges[:, :, 2]**2) / (2 * body_edges[:, :, 0] * body_edges[:, :, 1])
body_tan_half = np.sqrt(
(1. - np.clip(body_cos, a_max=1., a_min=-1.)) / np.clip(1. + body_cos, 1e-6, 2.)
)
w = (body_tan_half + np.roll(body_tan_half, shift=1, axis=1)) / body_edges_a
w /= w.sum(axis=1, keepdims=True)
return w
def get_dst_mat(contour_body, contour_cloth):
dst_mat = ((contour_body[:, None, :] - contour_cloth[None, :, :])**2).sum(axis=2)
return dst_mat
def dispCorres(img_size, contour1, contour2, phi, dir_path):
contour1 = contour1[None, :, None, :].astype(np.int32)
contour2 = contour2[None, :, None, :].astype(np.int32)
disp = np.zeros((img_size, img_size, 3), dtype=np.uint8)
cv2.drawContours(disp, contour1, -1, (0, 255, 0), 1) # green
cv2.drawContours(disp, contour2, -1, (255, 0, 0), 1) # blue
for i in range(contour1.shape[1]): # do not show all the points when display
# cv2.circle(disp, (contour1[0, i, 0, 0], contour1[0, i, 0, 1]), 1,
# (255, 0, 0), -1)
corresPoint = contour2[0, phi[i], 0]
# cv2.circle(disp, (corresPoint[0], corresPoint[1]), 1, (0, 255, 0), -1)
cv2.line(
disp, (contour1[0, i, 0, 0], contour1[0, i, 0, 1]), (corresPoint[0], corresPoint[1]),
(255, 255, 255), 1
)
cv2.imwrite(osp.join(dir_path, "corres.png"), disp)
def remove_stretched_faces(verts, faces):
mesh = trimesh.Trimesh(verts, faces)
camera_ray = np.array([0.0, 0.0, 1.0])
faces_cam_angles = np.dot(mesh.face_normals, camera_ray)
# cos(90-20)=0.34 cos(90-10)=0.17, 10~20 degree
faces_mask = np.abs(faces_cam_angles) > 2e-1
mesh.update_faces(faces_mask)
mesh.remove_unreferenced_vertices()
return mesh.vertices, mesh.faces
def tensor2arr(t, mask=False):
if not mask:
return t.squeeze(0).permute(1, 2, 0).detach().cpu().numpy()
else:
mask = t.squeeze(0).abs().sum(dim=0, keepdim=True)
return (mask != mask[:, 0, 0]).float().squeeze(0).detach().cpu().numpy()
def arr2png(t):
return ((t + 1.0) * 0.5 * 255.0).astype(np.uint8)
def depth2arr(t):
return t.float().detach().cpu().numpy()
def depth2png(t):
t_copy = t.copy()
t_bg = t_copy[0, 0]
valid_region = np.logical_and(t > -1.0, t != t_bg)
t_copy[valid_region] -= t_copy[valid_region].min()
t_copy[valid_region] /= t_copy[valid_region].max()
t_copy[valid_region] = (1. - t_copy[valid_region]) * 255.0
t_copy[~valid_region] = 0.0
return t_copy[..., None].astype(np.uint8)
def verts_transform(t, depth_scale):
t_copy = t.clone()
t_copy *= depth_scale * 0.5
t_copy += depth_scale * 0.5
t_copy = t_copy[:, [1, 0, 2]] * torch.Tensor([2.0, 2.0, -2.0]) + torch.Tensor(
[0.0, 0.0, depth_scale]
)
return t_copy
def verts_inverse_transform(t, depth_scale):
t_copy = t.clone()
t_copy -= torch.tensor([0.0, 0.0, depth_scale])
t_copy /= torch.tensor([2.0, 2.0, -2.0])
t_copy -= depth_scale * 0.5
t_copy /= depth_scale * 0.5
t_copy = t_copy[:, [1, 0, 2]]
return t_copy
def depth_inverse_transform(t, depth_scale):
t_copy = t.clone()
t_copy -= torch.tensor(depth_scale)
t_copy /= torch.tensor(-2.0)
t_copy -= depth_scale * 0.5
t_copy /= depth_scale * 0.5
return t_copy
# BNI related
def move_left(mask):
return cp.pad(mask, ((0, 0), (0, 1)), "constant", constant_values=0)[:, 1:]
def move_right(mask):
return cp.pad(mask, ((0, 0), (1, 0)), "constant", constant_values=0)[:, :-1]
def move_top(mask):
return cp.pad(mask, ((0, 1), (0, 0)), "constant", constant_values=0)[1:, :]
def move_bottom(mask):
return cp.pad(mask, ((1, 0), (0, 0)), "constant", constant_values=0)[:-1, :]
def move_top_left(mask):
return cp.pad(mask, ((0, 1), (0, 1)), "constant", constant_values=0)[1:, 1:]
def move_top_right(mask):
return cp.pad(mask, ((0, 1), (1, 0)), "constant", constant_values=0)[1:, :-1]
def move_bottom_left(mask):
return cp.pad(mask, ((1, 0), (0, 1)), "constant", constant_values=0)[:-1, 1:]
def move_bottom_right(mask):
return cp.pad(mask, ((1, 0), (1, 0)), "constant", constant_values=0)[:-1, :-1]
def generate_dx_dy_new(mask, nz_horizontal, nz_vertical, step_size=1):
# pixel coordinates
# ^ vertical positive
# |
# |
# |
# o ---> horizontal positive
num_pixel = cp.sum(mask)
pixel_idx = cp.zeros_like(mask, dtype=int)
pixel_idx[mask] = cp.arange(num_pixel)
has_left_mask = cp.logical_and(move_right(mask), mask)
has_right_mask = cp.logical_and(move_left(mask), mask)
has_bottom_mask = cp.logical_and(move_top(mask), mask)
has_top_mask = cp.logical_and(move_bottom(mask), mask)
nz_left = nz_horizontal[has_left_mask[mask]]
nz_right = nz_horizontal[has_right_mask[mask]]
nz_top = nz_vertical[has_top_mask[mask]]
nz_bottom = nz_vertical[has_bottom_mask[mask]]
data = cp.stack([-nz_left / step_size, nz_left / step_size], -1).flatten()
indices = cp.stack((pixel_idx[move_left(has_left_mask)], pixel_idx[has_left_mask]),
-1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_left_mask[mask].astype(int) * 2)])
D_horizontal_neg = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
data = cp.stack([-nz_right / step_size, nz_right / step_size], -1).flatten()
indices = cp.stack((pixel_idx[has_right_mask], pixel_idx[move_right(has_right_mask)]),
-1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_right_mask[mask].astype(int) * 2)])
D_horizontal_pos = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
data = cp.stack([-nz_top / step_size, nz_top / step_size], -1).flatten()
indices = cp.stack((pixel_idx[has_top_mask], pixel_idx[move_top(has_top_mask)]), -1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_top_mask[mask].astype(int) * 2)])
D_vertical_pos = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
data = cp.stack([-nz_bottom / step_size, nz_bottom / step_size], -1).flatten()
indices = cp.stack((pixel_idx[move_bottom(has_bottom_mask)], pixel_idx[has_bottom_mask]),
-1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_bottom_mask[mask].astype(int) * 2)])
D_vertical_neg = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
return D_horizontal_pos, D_horizontal_neg, D_vertical_pos, D_vertical_neg
def generate_dx_dy(mask, nz_horizontal, nz_vertical, step_size=1):
# pixel coordinates
# ^ vertical positive
# |
# |
# |
# o ---> horizontal positive
num_pixel = cp.sum(mask)
pixel_idx = cp.zeros_like(mask, dtype=int)
pixel_idx[mask] = cp.arange(num_pixel)
has_left_mask = cp.logical_and(move_right(mask), mask)
has_right_mask = cp.logical_and(move_left(mask), mask)
has_bottom_mask = cp.logical_and(move_top(mask), mask)
has_top_mask = cp.logical_and(move_bottom(mask), mask)
nz_left = nz_horizontal[has_left_mask[mask]]
nz_right = nz_horizontal[has_right_mask[mask]]
nz_top = nz_vertical[has_top_mask[mask]]
nz_bottom = nz_vertical[has_bottom_mask[mask]]
data = cp.stack([-nz_left / step_size, nz_left / step_size], -1).flatten()
indices = cp.stack((pixel_idx[move_left(has_left_mask)], pixel_idx[has_left_mask]),
-1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_left_mask[mask].astype(int) * 2)])
D_horizontal_neg = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
data = cp.stack([-nz_right / step_size, nz_right / step_size], -1).flatten()
indices = cp.stack((pixel_idx[has_right_mask], pixel_idx[move_right(has_right_mask)]),
-1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_right_mask[mask].astype(int) * 2)])
D_horizontal_pos = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
data = cp.stack([-nz_top / step_size, nz_top / step_size], -1).flatten()
indices = cp.stack((pixel_idx[has_top_mask], pixel_idx[move_top(has_top_mask)]), -1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_top_mask[mask].astype(int) * 2)])
D_vertical_pos = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
data = cp.stack([-nz_bottom / step_size, nz_bottom / step_size], -1).flatten()
indices = cp.stack((pixel_idx[move_bottom(has_bottom_mask)], pixel_idx[has_bottom_mask]),
-1).flatten()
indptr = cp.concatenate([cp.array([0]), cp.cumsum(has_bottom_mask[mask].astype(int) * 2)])
D_vertical_neg = csr_matrix((data, indices, indptr), shape=(num_pixel, num_pixel))
return D_horizontal_pos, D_horizontal_neg, D_vertical_pos, D_vertical_neg
def construct_facets_from(mask):
idx = cp.zeros_like(mask, dtype=int)
idx[mask] = cp.arange(cp.sum(mask))
facet_move_top_mask = move_top(mask)
facet_move_left_mask = move_left(mask)
facet_move_top_left_mask = move_top_left(mask)
facet_top_left_mask = (
facet_move_top_mask * facet_move_left_mask * facet_move_top_left_mask * mask
)
facet_top_right_mask = move_right(facet_top_left_mask)
facet_bottom_left_mask = move_bottom(facet_top_left_mask)
facet_bottom_right_mask = move_bottom_right(facet_top_left_mask)
return cp.hstack(
(
4 * cp.ones((cp.sum(facet_top_left_mask).item(), 1)),
idx[facet_top_left_mask][:, None],
idx[facet_bottom_left_mask][:, None],
idx[facet_bottom_right_mask][:, None],
idx[facet_top_right_mask][:, None],
)
).astype(int)
def map_depth_map_to_point_clouds(depth_map, mask, K=None, step_size=1):
# y
# | z
# | /
# |/
# o ---x
H, W = mask.shape
yy, xx = cp.meshgrid(cp.arange(W), cp.arange(H))
xx = cp.flip(xx, axis=0)
if K is None:
vertices = cp.zeros((H, W, 3))
vertices[..., 0] = xx * step_size
vertices[..., 1] = yy * step_size
vertices[..., 2] = depth_map
vertices = vertices[mask]
else:
u = cp.zeros((H, W, 3))
u[..., 0] = xx
u[..., 1] = yy
u[..., 2] = 1
u = u[mask].T # 3 x m
vertices = (cp.linalg.inv(K) @ u).T * depth_map[mask, cp.newaxis] # m x 3
return vertices
def sigmoid(x, k=1):
return 1 / (1 + cp.exp(-k * x))
def boundary_excluded_mask(mask):
top_mask = cp.pad(mask, ((1, 0), (0, 0)), "constant", constant_values=0)[:-1, :]
bottom_mask = cp.pad(mask, ((0, 1), (0, 0)), "constant", constant_values=0)[1:, :]
left_mask = cp.pad(mask, ((0, 0), (1, 0)), "constant", constant_values=0)[:, :-1]
right_mask = cp.pad(mask, ((0, 0), (0, 1)), "constant", constant_values=0)[:, 1:]
be_mask = top_mask * bottom_mask * left_mask * right_mask * mask
# discard single point
top_mask = cp.pad(be_mask, ((1, 0), (0, 0)), "constant", constant_values=0)[:-1, :]
bottom_mask = cp.pad(be_mask, ((0, 1), (0, 0)), "constant", constant_values=0)[1:, :]
left_mask = cp.pad(be_mask, ((0, 0), (1, 0)), "constant", constant_values=0)[:, :-1]
right_mask = cp.pad(be_mask, ((0, 0), (0, 1)), "constant", constant_values=0)[:, 1:]
bes_mask = (top_mask + bottom_mask + left_mask + right_mask).astype(bool)
be_mask = cp.logical_and(be_mask, bes_mask)
return be_mask
def create_boundary_matrix(mask):
num_pixel = cp.sum(mask)
pixel_idx = cp.zeros_like(mask, dtype=int)
pixel_idx[mask] = cp.arange(num_pixel)
be_mask = boundary_excluded_mask(mask)
boundary_mask = cp.logical_xor(be_mask, mask)
diag_data_term = boundary_mask[mask].astype(int)
B = diags(diag_data_term)
num_boundary_pixel = cp.sum(boundary_mask).item()
data_term = cp.concatenate((cp.ones(num_boundary_pixel), -cp.ones(num_boundary_pixel)))
row_idx = cp.tile(cp.arange(num_boundary_pixel), 2)
col_idx = cp.concatenate((pixel_idx[boundary_mask], pixel_idx[boundary_mask] + num_pixel))
B_full = coo_matrix((data_term, (row_idx, col_idx)), shape=(num_boundary_pixel, 2 * num_pixel))
return B, B_full
def double_side_bilateral_normal_integration(
normal_front,
normal_back,
normal_mask,
depth_front=None,
depth_back=None,
depth_mask=None,
k=2,
lambda_normal_back=1,
lambda_depth_front=1e-4,
lambda_depth_back=1e-2,
lambda_boundary_consistency=1,
step_size=1,
max_iter=150,
tol=1e-4,
cg_max_iter=5000,
cg_tol=1e-3
):
# To avoid confusion, we list the coordinate systems in this code as follows
#
# pixel coordinates camera coordinates normal coordinates (the main paper's Fig. 1 (a))
# u x y
# | | z |
# | | / o -- x
# | |/ /
# o --- v o --- y z
# (bottom left)
# (o is the optical center;
# xy-plane is parallel to the image plane;
# +z is the viewing direction.)
#
# The input normal map should be defined in the normal coordinates.
# The camera matrix K should be defined in the camera coordinates.
# K = [[fx, 0, cx],
# [0, fy, cy],
# [0, 0, 1]]
num_normals = cp.sum(normal_mask)
normal_map_front = cp.asarray(normal_front)
normal_map_back = cp.asarray(normal_back)
normal_mask = cp.asarray(normal_mask)
if depth_mask is not None:
depth_map_front = cp.asarray(depth_front)
depth_map_back = cp.asarray(depth_back)
depth_mask = cp.asarray(depth_mask)
# transfer the normal map from the normal coordinates to the camera coordinates
nx_front = normal_map_front[normal_mask, 1]
ny_front = normal_map_front[normal_mask, 0]
nz_front = -normal_map_front[normal_mask, 2]
del normal_map_front
nx_back = normal_map_back[normal_mask, 1]
ny_back = normal_map_back[normal_mask, 0]
nz_back = -normal_map_back[normal_mask, 2]
del normal_map_back
# right, left, top, bottom
A3_f, A4_f, A1_f, A2_f = generate_dx_dy(
normal_mask, nz_horizontal=nz_front, nz_vertical=nz_front, step_size=step_size
)
A3_b, A4_b, A1_b, A2_b = generate_dx_dy(
normal_mask, nz_horizontal=nz_back, nz_vertical=nz_back, step_size=step_size
)
has_left_mask = cp.logical_and(move_right(normal_mask), normal_mask)
has_right_mask = cp.logical_and(move_left(normal_mask), normal_mask)
has_bottom_mask = cp.logical_and(move_top(normal_mask), normal_mask)
has_top_mask = cp.logical_and(move_bottom(normal_mask), normal_mask)
top_boundnary_mask = cp.logical_xor(has_top_mask, normal_mask)[normal_mask]
bottom_boundary_mask = cp.logical_xor(has_bottom_mask, normal_mask)[normal_mask]
left_boundary_mask = cp.logical_xor(has_left_mask, normal_mask)[normal_mask]
right_boudnary_mask = cp.logical_xor(has_right_mask, normal_mask)[normal_mask]
A_front_data = vstack((A1_f, A2_f, A3_f, A4_f))
A_front_zero = csr_matrix(A_front_data.shape)
A_front = hstack([A_front_data, A_front_zero])
A_back_data = vstack((A1_b, A2_b, A3_b, A4_b))
A_back_zero = csr_matrix(A_back_data.shape)
A_back = hstack([A_back_zero, A_back_data])
b_front = cp.concatenate((-nx_front, -nx_front, -ny_front, -ny_front))
b_back = cp.concatenate((-nx_back, -nx_back, -ny_back, -ny_back))
# initialization
W_front = spdiags(
0.5 * cp.ones(4 * num_normals), 0, 4 * num_normals, 4 * num_normals, format="csr"
)
W_back = spdiags(
0.5 * cp.ones(4 * num_normals), 0, 4 * num_normals, 4 * num_normals, format="csr"
)
z_front = cp.zeros(num_normals, float)
z_back = cp.zeros(num_normals, float)
z_combined = cp.concatenate((z_front, z_back))
B, B_full = create_boundary_matrix(normal_mask)
B_mat = lambda_boundary_consistency * coo_matrix(B_full.get().T @ B_full.get()) #bug
energy_list = []
if depth_mask is not None:
depth_mask_flat = depth_mask[normal_mask].astype(bool) # shape: (num_normals,)
z_prior_front = depth_map_front[normal_mask] # shape: (num_normals,)
z_prior_front[~depth_mask_flat] = 0
z_prior_back = depth_map_back[normal_mask]
z_prior_back[~depth_mask_flat] = 0
m = depth_mask[normal_mask].astype(int)
M = diags(m)
energy = (A_front @ z_combined - b_front).T @ W_front @ (A_front @ z_combined - b_front) + \
lambda_normal_back * (A_back @ z_combined - b_back).T @ W_back @ (A_back @ z_combined - b_back) + \
lambda_depth_front * (z_front - z_prior_front).T @ M @ (z_front - z_prior_front) + \
lambda_depth_back * (z_back - z_prior_back).T @ M @ (z_back - z_prior_back) + \
lambda_boundary_consistency * (z_back - z_front).T @ B @ (z_back - z_front)
for i in range(max_iter):
A_mat_front = A_front_data.T @ W_front @ A_front_data
b_vec_front = A_front_data.T @ W_front @ b_front
A_mat_back = A_back_data.T @ W_back @ A_back_data
b_vec_back = A_back_data.T @ W_back @ b_back
if depth_mask is not None:
b_vec_front += lambda_depth_front * M @ z_prior_front
b_vec_back += lambda_depth_back * M @ z_prior_back
A_mat_front += lambda_depth_front * M
A_mat_back += lambda_depth_back * M
offset_front = cp.mean((z_prior_front - z_combined[:num_normals])[depth_mask_flat])
offset_back = cp.mean((z_prior_back - z_combined[num_normals:])[depth_mask_flat])
z_combined[:num_normals] = z_combined[:num_normals] + offset_front
z_combined[num_normals:] = z_combined[num_normals:] + offset_back
A_mat_combined = hstack([vstack((A_mat_front, csr_matrix((num_normals, num_normals)))), \
vstack((csr_matrix((num_normals, num_normals)), A_mat_back))]) + B_mat
b_vec_combined = cp.concatenate((b_vec_front, b_vec_back))
D = spdiags(
1 / cp.clip(A_mat_combined.diagonal(), 1e-5, None), 0, 2 * num_normals, 2 * num_normals,
"csr"
) # Jacob preconditioner
z_combined, _ = cg(
A_mat_combined, b_vec_combined, M=D, x0=z_combined, maxiter=cg_max_iter, tol=cg_tol
)
z_front = z_combined[:num_normals]
z_back = z_combined[num_normals:]
wu_f = sigmoid((A2_f.dot(z_front))**2 - (A1_f.dot(z_front))**2, k) # top
wv_f = sigmoid((A4_f.dot(z_front))**2 - (A3_f.dot(z_front))**2, k) # right
wu_f[top_boundnary_mask] = 0.5
wu_f[bottom_boundary_mask] = 0.5
wv_f[left_boundary_mask] = 0.5
wv_f[right_boudnary_mask] = 0.5
W_front = spdiags(
cp.concatenate((wu_f, 1 - wu_f, wv_f, 1 - wv_f)),
0,
4 * num_normals,
4 * num_normals,
format="csr"
)
wu_b = sigmoid((A2_b.dot(z_back))**2 - (A1_b.dot(z_back))**2, k) # top
wv_b = sigmoid((A4_b.dot(z_back))**2 - (A3_b.dot(z_back))**2, k) # right
wu_b[top_boundnary_mask] = 0.5
wu_b[bottom_boundary_mask] = 0.5
wv_b[left_boundary_mask] = 0.5
wv_b[right_boudnary_mask] = 0.5
W_back = spdiags(
cp.concatenate((wu_b, 1 - wu_b, wv_b, 1 - wv_b)),
0,
4 * num_normals,
4 * num_normals,
format="csr"
)
energy_old = energy
energy = (A_front_data @ z_front - b_front).T @ W_front @ (A_front_data @ z_front - b_front) + \
lambda_normal_back * (A_back_data @ z_back - b_back).T @ W_back @ (A_back_data @ z_back - b_back) + \
lambda_depth_front * (z_front - z_prior_front).T @ M @ (z_front - z_prior_front) + \
lambda_depth_back * (z_back - z_prior_back).T @ M @ (z_back - z_prior_back) +\
lambda_boundary_consistency * (z_back - z_front).T @ B @ (z_back - z_front)
energy_list.append(energy)
relative_energy = cp.abs(energy - energy_old) / energy_old
# print(f"step {i + 1}/{max_iter} energy: {energy:.3e}"
# f" relative energy: {relative_energy:.3e}")
if relative_energy < tol:
break
# del A1, A2, A3, A4, nx, ny
depth_map_front_est = cp.ones_like(normal_mask, float) * cp.nan
depth_map_front_est[normal_mask] = z_front
depth_map_back_est = cp.ones_like(normal_mask, float) * cp.nan
depth_map_back_est[normal_mask] = z_back
# manually cut the intersection
normal_mask[depth_map_front_est >= depth_map_back_est] = False
depth_map_front_est[~normal_mask] = cp.nan
depth_map_back_est[~normal_mask] = cp.nan
vertices_front = cp.asnumpy(
map_depth_map_to_point_clouds(
depth_map_front_est, normal_mask, K=None, step_size=step_size
)
)
vertices_back = cp.asnumpy(
map_depth_map_to_point_clouds(depth_map_back_est, normal_mask, K=None, step_size=step_size)
)
facets_back = cp.asnumpy(construct_facets_from(normal_mask))
faces_back = np.concatenate((facets_back[:, [1, 4, 3]], facets_back[:, [1, 3, 2]]), axis=0)
faces_front = np.concatenate((facets_back[:, [1, 2, 3]], facets_back[:, [1, 3, 4]]), axis=0)
vertices_front, faces_front = remove_stretched_faces(vertices_front, faces_front)
vertices_back, faces_back = remove_stretched_faces(vertices_back, faces_back)
front_mesh = clean_floats(trimesh.Trimesh(vertices_front, faces_front))
back_mesh = clean_floats(trimesh.Trimesh(vertices_back, faces_back))
result = {
"F_verts": torch.as_tensor(front_mesh.vertices).float(),
"F_faces": torch.as_tensor(front_mesh.faces).long(),
"B_verts": torch.as_tensor(back_mesh.vertices).float(),
"B_faces": torch.as_tensor(back_mesh.faces).long(),
"F_depth": torch.as_tensor(depth_map_front_est).float(),
"B_depth": torch.as_tensor(depth_map_back_est).float()
}
return result
def save_normal_tensor(in_tensor, idx, png_path, thickness=0.0):
os.makedirs(os.path.dirname(png_path), exist_ok=True)
normal_F_arr = tensor2arr(in_tensor["normal_F"][idx:idx + 1])
normal_B_arr = tensor2arr(in_tensor["normal_B"][idx:idx + 1])
mask_normal_arr = tensor2arr(in_tensor["image"][idx:idx + 1], True)
depth_F_arr = depth2arr(in_tensor["depth_F"][idx])
depth_B_arr = depth2arr(in_tensor["depth_B"][idx])
BNI_dict = {}
# clothed human
BNI_dict["normal_F"] = normal_F_arr
BNI_dict["normal_B"] = normal_B_arr
BNI_dict["mask"] = mask_normal_arr > 0.
BNI_dict["depth_F"] = depth_F_arr - 100. - thickness
BNI_dict["depth_B"] = 100. - depth_B_arr + thickness
BNI_dict["depth_mask"] = depth_F_arr != -1.0
np.save(png_path + ".npy", BNI_dict, allow_pickle=True)
return BNI_dict
|